# yolov5_deepsort **Repository Path**: ubuntu_wufan/yolov5_deepsort ## Basic Information - **Project Name**: yolov5_deepsort - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 2 - **Created**: 2021-12-29 - **Last Updated**: 2022-05-05 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Multi Tasks(Detect, Track, Dense, Count) in One Frame-Work A multi task frame-work based on Yolov5+Deepsort, contains: - [x] **detect task** - [x] **track task** - [x] **dense estimate task** - [x] **object counting task** ## Demo **dense estimate demo:** ![](demo/dense.gif) **object counting demo:** ![](demo/counter.gif) **tracking demo(with velocity visulization):** ![](demo/track.gif) ## Requirements ![](https://img.shields.io/badge/torch-1.6.0-green) ![](https://img.shields.io/badge/torchvision-0.7.0-green) ![](https://img.shields.io/badge/natsort-7.1.0-green) ![](https://img.shields.io/badge/opencv_python-4.1.1.26-green) ## Installation **1.clone this repository** ``` git clone https://gitlab.10010sh.cn/ai/yolov5_deepsort cd yolov5_deepsort ``` **2.download yolov5 weights** ``` cd pytorch_yolov5/weights ``` download weights file(yolov5l.pt) from [yolov5 V2.0](https://github.com/ultralytics/yolov5/releases/tag/v2.0) (at the bottom) to this folder. ``` cd ../../ ``` **3.download deepsort weights** ``` cd deepsort/deepsort/deep/checkpoint ``` download weights file(ckpt.t7) from [deepsort ckpt](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6) to this folder. ``` cd ../../../../ ``` ## Usage ``` python main.py --task detect --input {path to images or video or camera} --output {path to result save folder} track dense count ``` more detail parameters can seen in main.py ## References Thanks for the great work from [[yolov5](https://github.com/ultralytics/yolov5)] and [[deepsort](https://github.com/ZQPei/deep_sort_pytorch)].