# MonkeyOCR **Repository Path**: uduk1836/MonkeyOCR ## Basic Information - **Project Name**: MonkeyOCR - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-07-03 - **Last Updated**: 2025-07-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
MonkeyOCR currently does not support photographed documents, but we will continue to improve it in future updates. Stay tuned!
Currently, our model is deployed on a single GPU, so if too many users upload files at the same time, issues like “This application is currently busy” may occur. We're actively working on supporting Ollama and other deployment solutions to ensure a smoother experience for more users. Additionally, please note that the processing time shown on the demo page does not reflect computation time alone—it also includes result uploading and other overhead. During periods of high traffic, this time may be longer. The inference speeds of MonkeyOCR, MinerU, and Qwen2.5 VL-7B were measured on an H800 GPU.
## News
* ```2025.06.12 ``` 🚀 The model’s trending on [Hugging Face](https://huggingface.co/models?sort=trending). Thanks for the love!
* ```2025.06.05 ``` 🚀 We release MonkeyOCR, an English and Chinese documents parsing model.
# Quick Start
## Locally Install
### 1. Install MonkeyOCR
See the [installation guide](https://github.com/Yuliang-Liu/MonkeyOCR/blob/main/docs/install_cuda.md#install-with-cuda-support) to set up your environment.
### 2. Download Model Weights
Download our model from Huggingface.
```python
pip install huggingface_hub
python tools/download_model.py
```
You can also download our model from ModelScope.
```python
pip install modelscope
python tools/download_model.py -t modelscope
```
### 3. Inference
You can parse a file or a directory containing PDFs or images using the following commands:
```bash
# Replace input_path with the path to a PDF or image or directory
# End-to-end parsing
python parse.py input_path
# Parse files in a dir with specific group page num
python parse.py input_path -g 20
# Single-task recognition (outputs markdown only)
python parse.py input_path -t text/formula/table
# Parse PDFs in input_path and split results by pages
python parse.py input_path -s
# Specify output directory and model config file
python parse.py input_path -o ./output -c config.yaml
```
| Model Type | Methods | Overall Edit↓ | Text Edit↓ | Formula Edit↓ | Formula CDM↑ | Table TEDS↑ | Table Edit↓ | Read Order Edit↓ | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| EN | ZH | EN | ZH | EN | ZH | EN | ZH | EN | ZH | EN | ZH | EN | ZH | ||
| Pipeline Tools | MinerU | 0.150 | 0.357 | 0.061 | 0.215 | 0.278 | 0.577 | 57.3 | 42.9 | 78.6 | 62.1 | 0.180 | 0.344 | 0.079 | 0.292 |
| Marker | 0.336 | 0.556 | 0.080 | 0.315 | 0.530 | 0.883 | 17.6 | 11.7 | 67.6 | 49.2 | 0.619 | 0.685 | 0.114 | 0.340 | |
| Mathpix | 0.191 | 0.365 | 0.105 | 0.384 | 0.306 | 0.454 | 62.7 | 62.1 | 77.0 | 67.1 | 0.243 | 0.320 | 0.108 | 0.304 | |
| Docling | 0.589 | 0.909 | 0.416 | 0.987 | 0.999 | 1 | - | - | 61.3 | 25.0 | 0.627 | 0.810 | 0.313 | 0.837 | |
| Pix2Text | 0.320 | 0.528 | 0.138 | 0.356 | 0.276 | 0.611 | 78.4 | 39.6 | 73.6 | 66.2 | 0.584 | 0.645 | 0.281 | 0.499 | |
| Unstructured | 0.586 | 0.716 | 0.198 | 0.481 | 0.999 | 1 | - | - | 0 | 0.06 | 1 | 0.998 | 0.145 | 0.387 | |
| OpenParse | 0.646 | 0.814 | 0.681 | 0.974 | 0.996 | 1 | 0.11 | 0 | 64.8 | 27.5 | 0.284 | 0.639 | 0.595 | 0.641 | |
| Expert VLMs | GOT-OCR | 0.287 | 0.411 | 0.189 | 0.315 | 0.360 | 0.528 | 74.3 | 45.3 | 53.2 | 47.2 | 0.459 | 0.520 | 0.141 | 0.280 |
| Nougat | 0.452 | 0.973 | 0.365 | 0.998 | 0.488 | 0.941 | 15.1 | 16.8 | 39.9 | 0 | 0.572 | 1.000 | 0.382 | 0.954 | |
| Mistral OCR | 0.268 | 0.439 | 0.072 | 0.325 | 0.318 | 0.495 | 64.6 | 45.9 | 75.8 | 63.6 | 0.600 | 0.650 | 0.083 | 0.284 | |
| OLMOCR-sglang | 0.326 | 0.469 | 0.097 | 0.293 | 0.455 | 0.655 | 74.3 | 43.2 | 68.1 | 61.3 | 0.608 | 0.652 | 0.145 | 0.277 | |
| SmolDocling-256M | 0.493 | 0.816 | 0.262 | 0.838 | 0.753 | 0.997 | 32.1 | 0.55 | 44.9 | 16.5 | 0.729 | 0.907 | 0.227 | 0.522 | |
| General VLMs | GPT4o | 0.233 | 0.399 | 0.144 | 0.409 | 0.425 | 0.606 | 72.8 | 42.8 | 72.0 | 62.9 | 0.234 | 0.329 | 0.128 | 0.251 |
| Qwen2.5-VL-7B | 0.312 | 0.406 | 0.157 | 0.228 | 0.351 | 0.574 | 79.0 | 50.2 | 76.4 | 72.2 | 0.588 | 0.619 | 0.149 | 0.203 | |
| InternVL3-8B | 0.314 | 0.383 | 0.134 | 0.218 | 0.417 | 0.563 | 78.3 | 49.3 | 66.1 | 73.1 | 0.586 | 0.564 | 0.118 | 0.186 | |
| Mix | MonkeyOCR-3B [Weight] | 0.140 | 0.297 | 0.058 | 0.185 | 0.238 | 0.506 | 78.7 | 51.4 | 80.2 | 77.7 | 0.170 | 0.253 | 0.093 | 0.244 |
| MonkeyOCR-3B* [Weight] | 0.154 | 0.277 | 0.073 | 0.134 | 0.255 | 0.529 | 78.5 | 50.8 | 78.2 | 76.2 | 0.182 | 0.262 | 0.105 | 0.183 | |
| Model Type | Models | Book | Slides | Financial Report | Textbook | Exam Paper | Magazine | Academic Papers | Notes | Newspaper | Overall |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Pipeline Tools | MinerU | 0.055 | 0.124 | 0.033 | 0.102 | 0.159 | 0.072 | 0.025 | 0.984 | 0.171 | 0.206 |
| Marker | 0.074 | 0.340 | 0.089 | 0.319 | 0.452 | 0.153 | 0.059 | 0.651 | 0.192 | 0.274 | |
| Mathpix | 0.131 | 0.220 | 0.202 | 0.216 | 0.278 | 0.147 | 0.091 | 0.634 | 0.690 | 0.300 | |
| Expert VLMs | GOT-OCR | 0.111 | 0.222 | 0.067 | 0.132 | 0.204 | 0.198 | 0.179 | 0.388 | 0.771 | 0.267 |
| Nougat | 0.734 | 0.958 | 1.000 | 0.820 | 0.930 | 0.830 | 0.214 | 0.991 | 0.871 | 0.806 | |
| General VLMs | GPT4o | 0.157 | 0.163 | 0.348 | 0.187 | 0.281 | 0.173 | 0.146 | 0.607 | 0.751 | 0.316 |
| Qwen2.5-VL-7B | 0.148 | 0.053 | 0.111 | 0.137 | 0.189 | 0.117 | 0.134 | 0.204 | 0.706 | 0.205 | |
| InternVL3-8B | 0.163 | 0.056 | 0.107 | 0.109 | 0.129 | 0.100 | 0.159 | 0.150 | 0.681 | 0.188 | |
| Mix | MonkeyOCR-3B [Weight] | 0.046 | 0.120 | 0.024 | 0.100 | 0.129 | 0.086 | 0.024 | 0.643 | 0.131 | 0.155 |
| MonkeyOCR-3B* [Weight] | 0.054 | 0.203 | 0.038 | 0.112 | 0.138 | 0.111 | 0.032 | 0.194 | 0.136 | 0.120 |
## Visualization Demo
Get a Quick Hands-On Experience with Our Demo: http://vlrlabmonkey.xyz:7685
> Our demo is simple and easy to use:
>
> 1. Upload a PDF or image.
> 2. Click “Parse (解析)” to let the model perform structure detection, content recognition, and relationship prediction on the input document. The final output will be a markdown-formatted version of the document.
> 3. Select a prompt and click “Test by prompt” to let the model perform content recognition on the image based on the selected prompt.
### Support diverse Chinese and English PDF types
### Example for table document
### Example for newspaper
### Example for financial report
## Citing MonkeyOCR
If you wish to refer to the baseline results published here, please use the following BibTeX entries:
```BibTeX
@misc{li2025monkeyocrdocumentparsingstructurerecognitionrelation,
title={MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradigm},
author={Zhang Li and Yuliang Liu and Qiang Liu and Zhiyin Ma and Ziyang Zhang and Shuo Zhang and Zidun Guo and Jiarui Zhang and Xinyu Wang and Xiang Bai},
year={2025},
eprint={2506.05218},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2506.05218},
}
```
## Acknowledgments
We would like to thank [MinerU](https://github.com/opendatalab/MinerU), [DocLayout-YOLO](https://github.com/opendatalab/DocLayout-YOLO), [PyMuPDF](https://github.com/pymupdf/PyMuPDF), [layoutreader](https://github.com/ppaanngggg/layoutreader), [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL), [LMDeploy](https://github.com/InternLM/lmdeploy), and [InternVL3](https://github.com/OpenGVLab/InternVL) for providing base code and models, as well as their contributions to this field. We also thank [M6Doc](https://github.com/HCIILAB/M6Doc), [DocLayNet](https://github.com/DS4SD/DocLayNet), [CDLA](https://github.com/buptlihang/CDLA), [D4LA](https://github.com/AlibabaResearch/AdvancedLiterateMachinery), [DocGenome](https://github.com/Alpha-Innovator/DocGenome), [PubTabNet](https://github.com/ibm-aur-nlp/PubTabNet), and [UniMER-1M](https://github.com/opendatalab/UniMERNet) for providing valuable datasets. We also thank everyone who contributed to this open-source effort.
## Alternative Models to Explore
If you find that our model doesn’t fully meet your needs, feel free to try out the following two recently released awesome models:
[PP-StructureV3](https://github.com/PaddlePaddle/PaddleOCR)
[MinerU 2.0](https://github.com/opendatalab/mineru)
## Copyright
Please don’t hesitate to share your valuable feedback — it’s a key motivation that drives us to continuously improve our framework. The current technical report only presents the results of the 3B model. Our model is intended for non-commercial use. If you are interested in larger one, please contact us at xbai@hust.edu.cn or ylliu@hust.edu.cn.