# PPTAgent **Repository Path**: unit-putao/PPTAgent ## Basic Information - **Project Name**: PPTAgent - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-01-23 - **Last Updated**: 2025-11-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
🌐 Language
English | 简体中文 | 繁體中文 | 日本語 | 한국어 | हिन्दी | ไทย | Français | Deutsch | Español | Italiano | Русский | Português | Nederlands | Polski | العربية | فارسی | Türkçe | Tiếng Việt | Bahasa Indonesia | অসমীয়া
# PPTAgent: Generating and Evaluating Presentations Beyond Text-to-Slides

📄 Paper   |   🤗 OpenSource   |   📝 Documentation   |   Ask DeepWiki DeepWiki   |   🙏 Citation

We present PPTAgent, an innovative system that automatically generates presentations from documents. Drawing inspiration from human presentation creation methods, our system employs a two-step process to ensure excellence in overall quality. Additionally, we introduce **PPTEval**, a comprehensive evaluation framework that assesses presentations across multiple dimensions. > [!TIP] > 🚀 Get started quickly with our pre-built Docker image - [See Docker instructions](DOC.md/#docker-) ## 📅 News - [2025/09]: 🛠️ We support MCP server now, see [MCP Server](./DOC.md#mcp-server-) for details - [2025/09]: 🚀 Released v2 with major improvements - see [release notes](https://github.com/icip-cas/PPTAgent/releases/tag/v0.2.0) for details - [2025/08]: 🎉 Paper accepted to **EMNLP 2025**! - [2025/05]: ✨ Released v1 with core functionality and 🌟 breakthrough: reached 1,000 stars on GitHub! - see [release notes](https://github.com/icip-cas/PPTAgent/releases/tag/v0.1.0) for details - [2025/01]: 🔓 Open-sourced the codebase, with experimental code archived at [experiment release](https://github.com/icip-cas/PPTAgent/releases/tag/experiment) ## Open Source 🤗 We have released our model and data at [HuggingFace](https://huggingface.co/collections/ICIP/pptagent-68b80af43b4f4e0cb14d0bb2). ## Demo Video 🎥 https://github.com/user-attachments/assets/c3935a98-4d2b-4c46-9b36-e7c598d14863 ## Distinctive Features ✨ - **Dynamic Content Generation**: Creates slides with seamlessly integrated text and images - **Smart Reference Learning**: Leverages existing presentations without requiring manual annotation - **Comprehensive Quality Assessment**: Evaluates presentations through multiple quality metrics ## Case Study 💡 - #### [Iphone 16 Pro](https://www.apple.com/iphone-16-pro/)
图片1 图片2 图片3 图片4 图片5 图片6 图片7
- #### [Build Effective Agents](https://www.anthropic.com/research/building-effective-agents)
图片1 图片2 图片3 图片4 图片5 图片6 图片7 图片8 图片9 图片10
## PPTAgent 🤖 PPTAgent follows a two-phase approach: 1. **Analysis Phase**: Extracts and learns from patterns in reference presentations 2. **Generation Phase**: Develops structured outlines and produces visually cohesive slides Our system's workflow is illustrated below: ![PPTAgent Workflow](resource/fig2.jpg) ## PPTEval ⚖️ PPTEval evaluates presentations across three dimensions: - **Content**: Check the accuracy and relevance of the slides. - **Design**: Assesses the visual appeal and consistency. - **Coherence**: Ensures the logical flow of ideas. The workflow of PPTEval is shown below:

PPTEval Workflow

## Citation 🙏 If you find this project helpful, please use the following to cite it: ```bibtex @article{zheng2025pptagent, title={PPTAgent: Generating and Evaluating Presentations Beyond Text-to-Slides}, author={Zheng, Hao and Guan, Xinyan and Kong, Hao and Zheng, Jia and Zhou, Weixiang and Lin, Hongyu and Lu, Yaojie and He, Ben and Han, Xianpei and Sun, Le}, journal={arXiv preprint arXiv:2501.03936}, year={2025} } ``` [![Star History Chart](https://api.star-history.com/svg?repos=icip-cas/PPTAgent&type=Date)](https://star-history.com/#icip-cas/PPTAgent&Date)