# LIO_SAM_6AXIS **Repository Path**: vell/LIO_SAM_6AXIS ## Basic Information - **Project Name**: LIO_SAM_6AXIS - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-11-07 - **Last Updated**: 2023-11-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ![hkust](README/hkust.gif) # LIO_SAM_6AXIS LIO_SAM_6AXIS is an open-source SLAM project based on the project [LIO_SAM](https://github.com/TixiaoShan/LIO-SAM) that has been modified to support a wider range of sensors. It includes support for a 6-axis IMU and low-cost GNSS, making it easier to adapt for your own sensor setup. image-20220609035032131 ## Features LIO_SAM_6AXIS includes the following features: - Support for a 6-axis IMU: This allows you to use orientation information in state estimation, improving the accuracy of your results. - Support for low-cost GNSS: By eliminating the need to adapt for the robot_localization node, this feature makes it easier to integrate GNSS into your SLAM system. - GPS constraint visualization: This feature helps with debugging by allowing you to visualize the GPS constraints that are being used in the optimization. - Compatible with a range of lidars: LIO_SAM_6AXIS can be adapted to work with a range of lidars, including popular models like the VLP-16 ,Pandar32 and Ouster OS-1. - Easy to adapt: With minor changes to the original code, LIO_SAM_6AXIS can be adapted to work with your own sensors and lidars. ## Getting Started To get started with LIO_SAM_6AXIS, follow these steps: 1. Clone the repository: ```bash git clone https://github.com/JokerJohn/LIO_SAM_6AXIS.git ``` 2. Install the dependencies: ```bash cd LIO_SAM_6AXIS catkin build ``` 3. Launch the roslaunch file for your sensor setup: ```bash # set your bag_path here roslaunch lio_sam_6axis test_vlp16.launch ``` For more information on how to use LIO_SAM_6AXIS, see the video tutorial and documentation. 4. finally, save your point cloud map. ```bash # map is in the LIO-SAM-6AXIS/data rosservice call /lio_sam_6axis/save_map ``` image-20220609044824460 5. for docker support. `Dockerfile` is for people who don't want to break their own environment. ```bash # please cd the folder which have Dockerfile first, approximately 10mins based on your internet and CPU docker build -t zhangkin/lio_sam_6axis . docker run -it --net=host --gpus all --name lio_sam_6axis zhangkin/lio_sam_6axis /bin/zsh # OR -v to link the folder from your computer into container (your_computer_loc:container_loc) docker run -it --net=host --gpus all --name lio_sam_6axis -v /home/kin/bag_data:/home/xchu/data/ramlab_dataset zhangkin/lio_sam_6axis /bin/zsh # in the container catkin build source devel/setup.zsh # with dataset download and linked ==> please see more usage in previous section roslaunch lio_sam_6axis ouster128_indoors.launch # 对于在内地的同学,可以换源`dockerhub`后,直接拉取: docker pull zhangkin/lio_sam_6axis ``` ## Documentation The documentation for LIO_SAM_6AXIS can be found in the `doc` directory of the repository. It includes instructions on how to adapt the code for your own sensors and lidars. - [Bilibili](https://www.bilibili.com/video/BV1YS4y1i7nX/) - [Youtube](https://youtu.be/TgKSeNLkExc) ## Latest News(2023-07-10) Here are the latest updates to LIO_SAM_6AXIS: - Remove Gpstools and use libGeographic for accuracy . - Fix bugs of saving map service ## Dataset and Adaptation LIO_SAM_6AXIS is compatible with a range of datasets and sensor setups. To help you get started, we have included a table that lists some of the datasets and sensors that have been tested with LIO_SAM_6AXIS. | Dataset | Description | Sensors | Download Links | Ground Truth | Comments | | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | | hkust_20201105full | ![image-20221030035547512](README/image-20221030035547512.png) | VLP-16, STIM300 IMU, left camera, normal GPS | [Dropbox](https://drive.google.com/file/d/1bGmIll1mJayh5_2LokoshVneUmJ6ep00/view), [BaiduNetdisk](https://pan.baidu.com/s/1il01D0Ea3KgfdABS8iPHug) (password: m8g4) | [GT](https://hkustconnect-my.sharepoint.com/:t:/g/personal/xhubd_connect_ust_hk/ESoJj5STkVlFrOZruvEKg0gBasZimTC2HSQ2kqdIOWHiGg?e=TMtrz6) (password:123) | About 10 km outdoor, see [this doc](https://chat.openai.com/doc/adaption.md) | | [HILTI](https://hilti-challenge.com/dataset-2022.html) DATASET 2022 | ![img](README/construction_sheldonian.jpg) | Hesai32 lidar, low-cost IMU, 5 Fisher Eye cameras | [Download](https://hilti-challenge.com/dataset-2022.html) | | The [config/params_pandar.yaml](https://github.com/JokerJohn/LIO_SAM_6AXIS/blob/main/LIO-SAM-6AXIS/config/params_pandar.yaml) is prepared for the HILTI sensors kit | | [FusionPortable](https://ram-lab.com/file/site/fusionportable/dataset/fusionportable/) DATASET | ![Garden](README/garden.png) | Ouster OS1-128, STIM300 IMU, stereo camera | [Download](https://hkustconnect-my.sharepoint.com/:u:/g/personal/xhubd_connect_ust_hk/EQavWMqsN6FCiKlpBanFis8Bci-Mwl3S_-g1XPrUrVFB9Q?e=lGEKFE) | [GT](https://hkustconnect-my.sharepoint.com/:t:/g/personal/xhubd_connect_ust_hk/Ea-e6VPaa59Br-26KAQ5IssBwjYcoJSNOJs0qeKNZVeg1w?e=ZjrHx4) | Indoors. When you download this compressed data, remember to execute the following command: `rosbag decompress 20220216_garden_day_ref_compressed.bag` | ## Related Package ### 1. [LIO-SAM-6AXIS-UrbanNav](https://github.com/zhouyong1234/LIO-SAM-6AXIS-UrbanNav) - LIO_SAM 6轴IMU适配香港城市数据集UrbanNav,并给出添加GPS约束和不加GPS约束的结果 ### 2. [LIO-SAM-6AXIS-INTENSITY](https://github.com/JokerJohn/LIO-SAM-6AXIS-INTENSITY) - integrate [LIO-SAM](https://github.com/TixiaoShan/LIO-SAM) and [Imaging_lidar_place_recognition](https://github.com/TixiaoShan/imaging_lidar_place_recognition) to achieve better mapping and localization result for SLAM system. ## Credits We would like to thank TixiaoShan for creating the LIO_SAM project that served as the foundation for this work. ## Acknowledgments Our deep gratitude goes to [Guoqing Zhang](https://github.com/MyEvolution), [Jianhao Jiao](https://github.com/gogojjh), [Jin Wu](https://github.com/zarathustr), and [Qingwen Zhang](https://github.com/Kin-Zhang) for their invaluable contributions to this project. A special mention goes to the [LIO_SAM](https://github.com/TixiaoShan/LIO-SAM) for laying the groundwork for our efforts. We also thank the open-source community, whose relentless pursuit of SLAM technology advancement has made this project possible. ![Star History Chart](https://api.star-history.com/svg?repos=JokerJohn/LIO_SAM_6AXIS&type=Date)