# DFireDataset **Repository Path**: wang-liaochen/DFireDataset ## Basic Information - **Project Name**: DFireDataset - **Description**: No description available - **Primary Language**: Unknown - **License**: CC0-1.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2024-07-23 - **Last Updated**: 2025-01-12 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # D-Fire: an image dataset for fire and smoke detection **Authors:** Researchers from Gaia, solutions on demand ([GAIA](https://www.gaiasd.com/)) ## About D-Fire is an image dataset of fire and smoke occurrences designed for machine learning and object detection algorithms with more than 21,000 images.
Number of images Number of bounding boxes
| Category | # Images | | ------------- | ------------- | | Only fire | 1,164 | | Only smoke | 5,867 | | Fire and smoke | 4,658 | | None | 9,838 | | Class | # Bounding boxes | | ------------- | ------------- | | Fire | 14,692 | | Smoke | 11,865 |
All images were annotated according to the YOLO format (normalized coordinates between 0 and 1). However, we provide the yolo2pixel function that converts coordinates in YOLO format to coordinates in pixels. *** ## Examples
## Download * [D-Fire dataset (only images and labels)](https://drive.google.com/drive/folders/1DWgsQLVgkkLM8m-VcugHNpD5WYDbjYp5?usp=sharing). * [Training, validation and test sets](https://drive.google.com/drive/folders/1Np_FC3MuuFJgV-z0FmZwS9YzsTKdyRGJ?usp=sharing). * [Some surveillance videos](https://drive.google.com/drive/folders/1P5TNDP7ZrWpIZ4v_Aav5hf3S9UII2ZKA?usp=sharing). * [Some models trained with the D-Fire dataset](https://github.com/pedbrgs/Fire-Detection). * For more surveillance videos, request your registration on our environmental monitoring website ["Apaga o Fogo!" (Put out the Fire!)](https://apagaofogo.eco.br/). ## Citation Please cite the following paper if you use our image database: -

Pedro Vinícius Almeida Borges de Venâncio, Adriano Chaves Lisboa, Adriano Vilela Barbosa: An automatic fire detection system based on deep convolutional neural networks for low-power, resource-constrained devices. In: Neural Computing and Applications, 2022.

If you use our surveillance videos, please cite the following paper: -

Pedro Vinícius Almeida Borges de Venâncio, Roger Júnio Campos, Tamires Martins Rezende, Adriano Chaves Lisboa, Adriano Vilela Barbosa: A hybrid method for fire detection based on spatial and temporal patterns. In: Neural Computing and Applications, 2023.