# mm-cot
**Repository Path**: wang-yang-y/mm-cot
## Basic Information
- **Project Name**: mm-cot
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: dependabot/pip/transformers-4.36.0
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2024-07-28
- **Last Updated**: 2024-07-28
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Multimodal Chain-of-Thought Reasoning in Language Models
"Imagine learning a textbook without figures or tables."
Multimodal-CoT incorporates vision features in a decoupled training framework. The framework consists of two training stages: (i) rationale generation and (ii) answer inference. Both stages share the same model architecture but differ in the input and output.

## Requirements
Install all required python dependencies:
```
pip install -r requirements.txt
```
## Datasets
Download the dataset from the following repository:
```
https://github.com/lupantech/ScienceQA/tree/main/data
```
The vision features (detr, resnet, clip, vit) are available at https://huggingface.co/cooelf/vision_features/tree/main
Alternatively, you may download the extracted vision features (detr, resnet, clip) from [vision_features](https://drive.google.com/file/d/13B0hc_F_45-UlqPLKSgRz-ALtFQ8kIJr/view?usp=share_link) and unzip the files under `vision_features`
## Extract Features (optional)
The processed vision features for ScienceQA are available at https://huggingface.co/cooelf/vision_features/tree/main.
The following instructions show how we obtain those features.
Download the image files from [Google Drive](https://drive.google.com/drive/folders/1w8imCXWYn2LxajmGeGH_g5DaL2rabHev?usp=sharing) and unzip all the images (train, dev, test) in the same folder (). The structure should be:
```
images
├── 1
│ └── image.png
├── 2
│ └── image.png
├── 3
│ └── image.png
├── 5
│ └── image.png
├── 7
│ └── image.png
```
Run ```extract_features.py --data_root images --output_dir vision_features --img_type vit```
If you hope to use your own images, please structure those images in the way above, or modify the script ```extract_features.py```.
## Extract Captions (optional)
The processed captions for ScienceQA are available at ```data/instruct_captions.json```.
The following instructions show how we obtain those features.
Intall lavis and prepare Vicuna weights to use InstructBLIP for caption extraction.
https://github.com/salesforce/LAVIS/tree/f982acc73288408bceda2d35471a8fcf55aa04ca/projects/instructblip
Assume that the images are stored in the ```images``` folder.
```
python extract_caption.py
```
## Instructions
### Training
```
# rationale generation
CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py \
--data_root data/ScienceQA/data \
--caption_file data/instruct_captions.json \
--model declare-lab/flan-alpaca-large \
--user_msg rationale --img_type vit \
--bs 2 --eval_bs 4 --epoch 50 --lr 5e-5 --output_len 512 \
--use_caption --use_generate --prompt_format QCM-E \
--output_dir experiments
# answer inference
CUDA_VISIBLE_DEVICES=0,1,2,3 python main_central.py \
--data_root data/ScienceQA/data \
--caption_file data/instruct_captions.json \
--model declare-lab/flan-alpaca-large \
--user_msg answer --img_type vit \
--bs 4 --eval_bs 8 --epoch 50 --lr 5e-5 --output_len 64 \
--use_caption --use_generate --prompt_format QCMG-A \
--output_dir experiments \
--eval_le experiments/rationale_declare-lab-flan-alpaca-large_vit_QCM-E_lr5e-05_bs8_op512_ep50/predictions_ans_eval.json \
--test_le experiments/rationale_declare-lab-flan-alpaca-large_vit_QCM-E_lr5e-05_bs8_op512_ep50/predictions_ans_test.json
```
### Inference
Our trained models are available at https://huggingface.co/cooelf/mm-cot/tree/main. To use our trained models, please put the them under the ```models``` folder.
```
# rationale generation
CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py \
--data_root data/ScienceQA/data \
--caption_file data/instruct_captions.json \
--model declare-lab/flan-alpaca-large \
--user_msg rationale --img_type vit \
--bs 2 --eval_bs 4 --epoch 50 --lr 5e-5 --output_len 512 \
--use_caption --use_generate --prompt_format QCM-E \
--output_dir experiments
--evaluate_dir models/mm-cot-large-rationale
# answer inference
CUDA_VISIBLE_DEVICES=0,1,2,3 python main_central.py \
--data_root data/ScienceQA/data \
--caption_file data/instruct_captions.json \
--model declare-lab/flan-alpaca-large \
--user_msg answer --img_type vit \
--bs 4 --eval_bs 8 --epoch 50 --lr 5e-5 --output_len 64 \
--use_caption --use_generate --prompt_format QCMG-A \
--output_dir experiments \
--eval_le experiments/rationale_declare-lab-flan-alpaca-large_vit_QCM-E_lr5e-05_bs8_op512_ep50/predictions_ans_eval.json \
--test_le experiments/rationale_declare-lab-flan-alpaca-large_vit_QCM-E_lr5e-05_bs8_op512_ep50/predictions_ans_test.json \
--evaluate_dir models/mm-cot-large-answer
```
## Citing MM-CoT
```
@article{zhang2023multicot,
title={Multimodal Chain-of-Thought Reasoning in Language Models},
author={Zhang, Zhuosheng and Zhang, Aston and Li, Mu and Zhao, Hai and Karypis, George and Smola, Alex},
journal={arXiv preprint arXiv:2302.00923},
year={2023}
}
```
## License
This project is licensed under the Apache-2.0 License.
## Acknowledgement
Part of our codes are adapted from [ScienceQA](https://github.com/lupantech/ScienceQA), [Transformers](https://github.com/huggingface/transformers), [pytorch-image-models](https://github.com/huggingface/pytorch-image-models).
We thank [Pan Lu](https://lupantech.github.io/) for providing parameter size for ScienceQA baselines.