# 表情识别 **Repository Path**: wang-zhizhou_1/expression-recognition ## Basic Information - **Project Name**: 表情识别 - **Description**: 用于表情分类 - **Primary Language**: Python - **License**: MulanPSL-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 6 - **Forks**: 3 - **Created**: 2021-08-11 - **Last Updated**: 2024-05-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 如何在忘乎所以时察觉对方的情感变化 本项目用于对表情进行识别,可以利用表情来察觉情感。 # 一、项目背景 在学习了微表情心理学后,认识到读懂表情对认识一个人的情感变化的意义,从而诞生了做这一项目的想法。 ## 载入所需库 ```py import paddle import numpy as np import cv2 from paddle.vision.models import resnet50 from paddle.vision.datasets import DatasetFolder import matplotlib.pylab as plt import os ``` ## 定义参数 ```py train_file='train' valid_file='valid' test_file='test' imagesize=32 batch_size=32 lr=1e-5 ``` # 二、数据集介绍 本项目用fer2013数据集,事先数据集已完成对训练集和验证集的切分,同时已将不同表情放于不同文件夹中。具体表情对应的标签和中英文如下:0 anger 生气; 1 disgust 厌恶; 2 fear 恐惧; 3 happy 开心; 4 sad 伤心;5 surprised 惊讶; 6 normal 中性。 ## 1.解压数据集 ```py !unzip -oq /home/aistudio/work/image/fer2013.zip ``` ## 2.对数据加载进行预处理 ```py # 定义数据预处理 def load_image(img_path): img = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB) #resize img = cv2.resize(img,(imagesize,imagesize)) img = np.array(img).astype('float32') # HWC to CHW img = img.transpose((2,0,1)) #Normalize img = img / 255 return img # 构建Dataset class Face(DatasetFolder): def __init__(self, path): super().__init__(path) def __getitem__(self, index): img_path, label = self.samples[index] label = np.array(label).astype(np.int64) return load_image(img_path), label train_dataset = Face(train_file) eval_dataset = Face(valid_file) ``` ## 3.对数据集查看 ```py plt.figure(figsize=(15, 15)) for i in range(5): fundus_img, lab = train_dataset.__getitem__(i) plt.subplot(2, 5, i+1) plt.imshow(fundus_img.transpose(1, 2, 0)) plt.axis("off") print(lab) ``` # 三、模型选择和开发 选择了resnet50,又用了两个全连接层,然后输出。 ## 1.模型组网 ```py class Network(paddle.nn.Layer): def __init__(self): super(Network, self).__init__() self.resnet = resnet50(pretrained=True, num_classes=0) self.flatten = paddle.nn.Flatten() self.linear_1 = paddle.nn.Linear(2048, 512) self.linear_2 = paddle.nn.Linear(512, 256) self.linear_3 = paddle.nn.Linear(256, 8) self.relu = paddle.nn.ReLU() self.dropout = paddle.nn.Dropout(0.2) def forward(self, inputs): # print('input', inputs) y = self.resnet(inputs) y = self.flatten(y) y = self.linear_1(y) y = self.linear_2(y) y = self.relu(y) y = self.dropout(y) y = self.linear_3(y) y = paddle.nn.functional.sigmoid(y) return y ``` ## 2.实例化模型和模型可视化 ```py inputs = paddle.static.InputSpec(shape=[None, 3, 32, 32], name='inputs') labels = paddle.static.InputSpec(shape=[None, 2], name='labels') model = paddle.Model(Network(), inputs, labels) paddle.summary(Network(), (1, 3, 32, 32)) ``` ``` ------------------------------------------------------------------------------- Layer (type) Input Shape Output Shape Param # =============================================================================== Conv2D-54 [[1, 3, 32, 32]] [1, 64, 16, 16] 9,408 BatchNorm2D-54 [[1, 64, 16, 16]] [1, 64, 16, 16] 256 ReLU-19 [[1, 64, 16, 16]] [1, 64, 16, 16] 0 MaxPool2D-2 [[1, 64, 16, 16]] [1, 64, 8, 8] 0 Conv2D-56 [[1, 64, 8, 8]] [1, 64, 8, 8] 4,096 BatchNorm2D-56 [[1, 64, 8, 8]] [1, 64, 8, 8] 256 ReLU-20 [[1, 256, 8, 8]] [1, 256, 8, 8] 0 Conv2D-57 [[1, 64, 8, 8]] [1, 64, 8, 8] 36,864 BatchNorm2D-57 [[1, 64, 8, 8]] [1, 64, 8, 8] 256 Conv2D-58 [[1, 64, 8, 8]] [1, 256, 8, 8] 16,384 BatchNorm2D-58 [[1, 256, 8, 8]] [1, 256, 8, 8] 1,024 Conv2D-55 [[1, 64, 8, 8]] [1, 256, 8, 8] 16,384 BatchNorm2D-55 [[1, 256, 8, 8]] [1, 256, 8, 8] 1,024 BottleneckBlock-17 [[1, 64, 8, 8]] [1, 256, 8, 8] 0 Conv2D-59 [[1, 256, 8, 8]] [1, 64, 8, 8] 16,384 BatchNorm2D-59 [[1, 64, 8, 8]] [1, 64, 8, 8] 256 ReLU-21 [[1, 256, 8, 8]] [1, 256, 8, 8] 0 Conv2D-60 [[1, 64, 8, 8]] [1, 64, 8, 8] 36,864 BatchNorm2D-60 [[1, 64, 8, 8]] [1, 64, 8, 8] 256 Conv2D-61 [[1, 64, 8, 8]] [1, 256, 8, 8] 16,384 BatchNorm2D-61 [[1, 256, 8, 8]] [1, 256, 8, 8] 1,024 BottleneckBlock-18 [[1, 256, 8, 8]] [1, 256, 8, 8] 0 Conv2D-62 [[1, 256, 8, 8]] [1, 64, 8, 8] 16,384 BatchNorm2D-62 [[1, 64, 8, 8]] [1, 64, 8, 8] 256 ReLU-22 [[1, 256, 8, 8]] [1, 256, 8, 8] 0 Conv2D-63 [[1, 64, 8, 8]] [1, 64, 8, 8] 36,864 BatchNorm2D-63 [[1, 64, 8, 8]] [1, 64, 8, 8] 256 Conv2D-64 [[1, 64, 8, 8]] [1, 256, 8, 8] 16,384 BatchNorm2D-64 [[1, 256, 8, 8]] [1, 256, 8, 8] 1,024 BottleneckBlock-19 [[1, 256, 8, 8]] [1, 256, 8, 8] 0 Conv2D-66 [[1, 256, 8, 8]] [1, 128, 8, 8] 32,768 BatchNorm2D-66 [[1, 128, 8, 8]] [1, 128, 8, 8] 512 ReLU-23 [[1, 512, 4, 4]] [1, 512, 4, 4] 0 Conv2D-67 [[1, 128, 8, 8]] [1, 128, 4, 4] 147,456 BatchNorm2D-67 [[1, 128, 4, 4]] [1, 128, 4, 4] 512 Conv2D-68 [[1, 128, 4, 4]] [1, 512, 4, 4] 65,536 BatchNorm2D-68 [[1, 512, 4, 4]] [1, 512, 4, 4] 2,048 Conv2D-65 [[1, 256, 8, 8]] [1, 512, 4, 4] 131,072 BatchNorm2D-65 [[1, 512, 4, 4]] [1, 512, 4, 4] 2,048 BottleneckBlock-20 [[1, 256, 8, 8]] [1, 512, 4, 4] 0 Conv2D-69 [[1, 512, 4, 4]] [1, 128, 4, 4] 65,536 BatchNorm2D-69 [[1, 128, 4, 4]] [1, 128, 4, 4] 512 ReLU-24 [[1, 512, 4, 4]] [1, 512, 4, 4] 0 Conv2D-70 [[1, 128, 4, 4]] [1, 128, 4, 4] 147,456 BatchNorm2D-70 [[1, 128, 4, 4]] [1, 128, 4, 4] 512 Conv2D-71 [[1, 128, 4, 4]] [1, 512, 4, 4] 65,536 BatchNorm2D-71 [[1, 512, 4, 4]] [1, 512, 4, 4] 2,048 BottleneckBlock-21 [[1, 512, 4, 4]] [1, 512, 4, 4] 0 Conv2D-72 [[1, 512, 4, 4]] [1, 128, 4, 4] 65,536 BatchNorm2D-72 [[1, 128, 4, 4]] [1, 128, 4, 4] 512 ReLU-25 [[1, 512, 4, 4]] [1, 512, 4, 4] 0 Conv2D-73 [[1, 128, 4, 4]] [1, 128, 4, 4] 147,456 BatchNorm2D-73 [[1, 128, 4, 4]] [1, 128, 4, 4] 512 Conv2D-74 [[1, 128, 4, 4]] [1, 512, 4, 4] 65,536 BatchNorm2D-74 [[1, 512, 4, 4]] [1, 512, 4, 4] 2,048 BottleneckBlock-22 [[1, 512, 4, 4]] [1, 512, 4, 4] 0 Conv2D-75 [[1, 512, 4, 4]] [1, 128, 4, 4] 65,536 BatchNorm2D-75 [[1, 128, 4, 4]] [1, 128, 4, 4] 512 ReLU-26 [[1, 512, 4, 4]] [1, 512, 4, 4] 0 Conv2D-76 [[1, 128, 4, 4]] [1, 128, 4, 4] 147,456 BatchNorm2D-76 [[1, 128, 4, 4]] [1, 128, 4, 4] 512 Conv2D-77 [[1, 128, 4, 4]] [1, 512, 4, 4] 65,536 BatchNorm2D-77 [[1, 512, 4, 4]] [1, 512, 4, 4] 2,048 BottleneckBlock-23 [[1, 512, 4, 4]] [1, 512, 4, 4] 0 Conv2D-79 [[1, 512, 4, 4]] [1, 256, 4, 4] 131,072 BatchNorm2D-79 [[1, 256, 4, 4]] [1, 256, 4, 4] 1,024 ReLU-27 [[1, 1024, 2, 2]] [1, 1024, 2, 2] 0 Conv2D-80 [[1, 256, 4, 4]] [1, 256, 2, 2] 589,824 BatchNorm2D-80 [[1, 256, 2, 2]] [1, 256, 2, 2] 1,024 Conv2D-81 [[1, 256, 2, 2]] [1, 1024, 2, 2] 262,144 BatchNorm2D-81 [[1, 1024, 2, 2]] [1, 1024, 2, 2] 4,096 Conv2D-78 [[1, 512, 4, 4]] [1, 1024, 2, 2] 524,288 BatchNorm2D-78 [[1, 1024, 2, 2]] [1, 1024, 2, 2] 4,096 BottleneckBlock-24 [[1, 512, 4, 4]] [1, 1024, 2, 2] 0 Conv2D-82 [[1, 1024, 2, 2]] [1, 256, 2, 2] 262,144 BatchNorm2D-82 [[1, 256, 2, 2]] [1, 256, 2, 2] 1,024 ReLU-28 [[1, 1024, 2, 2]] [1, 1024, 2, 2] 0 Conv2D-83 [[1, 256, 2, 2]] [1, 256, 2, 2] 589,824 BatchNorm2D-83 [[1, 256, 2, 2]] [1, 256, 2, 2] 1,024 Conv2D-84 [[1, 256, 2, 2]] [1, 1024, 2, 2] 262,144 BatchNorm2D-84 [[1, 1024, 2, 2]] [1, 1024, 2, 2] 4,096 BottleneckBlock-25 [[1, 1024, 2, 2]] [1, 1024, 2, 2] 0 Conv2D-85 [[1, 1024, 2, 2]] [1, 256, 2, 2] 262,144 BatchNorm2D-85 [[1, 256, 2, 2]] [1, 256, 2, 2] 1,024 ReLU-29 [[1, 1024, 2, 2]] [1, 1024, 2, 2] 0 Conv2D-86 [[1, 256, 2, 2]] [1, 256, 2, 2] 589,824 BatchNorm2D-86 [[1, 256, 2, 2]] [1, 256, 2, 2] 1,024 Conv2D-87 [[1, 256, 2, 2]] [1, 1024, 2, 2] 262,144 BatchNorm2D-87 [[1, 1024, 2, 2]] [1, 1024, 2, 2] 4,096 BottleneckBlock-26 [[1, 1024, 2, 2]] [1, 1024, 2, 2] 0 Conv2D-88 [[1, 1024, 2, 2]] [1, 256, 2, 2] 262,144 BatchNorm2D-88 [[1, 256, 2, 2]] [1, 256, 2, 2] 1,024 ReLU-30 [[1, 1024, 2, 2]] [1, 1024, 2, 2] 0 Conv2D-89 [[1, 256, 2, 2]] [1, 256, 2, 2] 589,824 BatchNorm2D-89 [[1, 256, 2, 2]] [1, 256, 2, 2] 1,024 Conv2D-90 [[1, 256, 2, 2]] [1, 1024, 2, 2] 262,144 BatchNorm2D-90 [[1, 1024, 2, 2]] [1, 1024, 2, 2] 4,096 BottleneckBlock-27 [[1, 1024, 2, 2]] [1, 1024, 2, 2] 0 Conv2D-91 [[1, 1024, 2, 2]] [1, 256, 2, 2] 262,144 BatchNorm2D-91 [[1, 256, 2, 2]] [1, 256, 2, 2] 1,024 ReLU-31 [[1, 1024, 2, 2]] [1, 1024, 2, 2] 0 Conv2D-92 [[1, 256, 2, 2]] [1, 256, 2, 2] 589,824 BatchNorm2D-92 [[1, 256, 2, 2]] [1, 256, 2, 2] 1,024 Conv2D-93 [[1, 256, 2, 2]] [1, 1024, 2, 2] 262,144 BatchNorm2D-93 [[1, 1024, 2, 2]] [1, 1024, 2, 2] 4,096 BottleneckBlock-28 [[1, 1024, 2, 2]] [1, 1024, 2, 2] 0 Conv2D-94 [[1, 1024, 2, 2]] [1, 256, 2, 2] 262,144 BatchNorm2D-94 [[1, 256, 2, 2]] [1, 256, 2, 2] 1,024 ReLU-32 [[1, 1024, 2, 2]] [1, 1024, 2, 2] 0 Conv2D-95 [[1, 256, 2, 2]] [1, 256, 2, 2] 589,824 BatchNorm2D-95 [[1, 256, 2, 2]] [1, 256, 2, 2] 1,024 Conv2D-96 [[1, 256, 2, 2]] [1, 1024, 2, 2] 262,144 BatchNorm2D-96 [[1, 1024, 2, 2]] [1, 1024, 2, 2] 4,096 BottleneckBlock-29 [[1, 1024, 2, 2]] [1, 1024, 2, 2] 0 Conv2D-98 [[1, 1024, 2, 2]] [1, 512, 2, 2] 524,288 BatchNorm2D-98 [[1, 512, 2, 2]] [1, 512, 2, 2] 2,048 ReLU-33 [[1, 2048, 1, 1]] [1, 2048, 1, 1] 0 Conv2D-99 [[1, 512, 2, 2]] [1, 512, 1, 1] 2,359,296 BatchNorm2D-99 [[1, 512, 1, 1]] [1, 512, 1, 1] 2,048 Conv2D-100 [[1, 512, 1, 1]] [1, 2048, 1, 1] 1,048,576 BatchNorm2D-100 [[1, 2048, 1, 1]] [1, 2048, 1, 1] 8,192 Conv2D-97 [[1, 1024, 2, 2]] [1, 2048, 1, 1] 2,097,152 BatchNorm2D-97 [[1, 2048, 1, 1]] [1, 2048, 1, 1] 8,192 BottleneckBlock-30 [[1, 1024, 2, 2]] [1, 2048, 1, 1] 0 Conv2D-101 [[1, 2048, 1, 1]] [1, 512, 1, 1] 1,048,576 BatchNorm2D-101 [[1, 512, 1, 1]] [1, 512, 1, 1] 2,048 ReLU-34 [[1, 2048, 1, 1]] [1, 2048, 1, 1] 0 Conv2D-102 [[1, 512, 1, 1]] [1, 512, 1, 1] 2,359,296 BatchNorm2D-102 [[1, 512, 1, 1]] [1, 512, 1, 1] 2,048 Conv2D-103 [[1, 512, 1, 1]] [1, 2048, 1, 1] 1,048,576 BatchNorm2D-103 [[1, 2048, 1, 1]] [1, 2048, 1, 1] 8,192 BottleneckBlock-31 [[1, 2048, 1, 1]] [1, 2048, 1, 1] 0 Conv2D-104 [[1, 2048, 1, 1]] [1, 512, 1, 1] 1,048,576 BatchNorm2D-104 [[1, 512, 1, 1]] [1, 512, 1, 1] 2,048 ReLU-35 [[1, 2048, 1, 1]] [1, 2048, 1, 1] 0 Conv2D-105 [[1, 512, 1, 1]] [1, 512, 1, 1] 2,359,296 BatchNorm2D-105 [[1, 512, 1, 1]] [1, 512, 1, 1] 2,048 Conv2D-106 [[1, 512, 1, 1]] [1, 2048, 1, 1] 1,048,576 BatchNorm2D-106 [[1, 2048, 1, 1]] [1, 2048, 1, 1] 8,192 BottleneckBlock-32 [[1, 2048, 1, 1]] [1, 2048, 1, 1] 0 AdaptiveAvgPool2D-2 [[1, 2048, 1, 1]] [1, 2048, 1, 1] 0 ResNet-2 [[1, 3, 32, 32]] [1, 2048, 1, 1] 0 Flatten-2 [[1, 2048, 1, 1]] [1, 2048] 0 Linear-4 [[1, 2048]] [1, 512] 1,049,088 Linear-5 [[1, 512]] [1, 256] 131,328 ReLU-36 [[1, 256]] [1, 256] 0 Dropout-2 [[1, 256]] [1, 256] 0 Linear-6 [[1, 256]] [1, 8] 2,056 =============================================================================== Total params: 24,743,624 Trainable params: 24,637,384 Non-trainable params: 106,240 ------------------------------------------------------------------------------- Input size (MB): 0.01 Forward/backward pass size (MB): 5.39 Params size (MB): 94.39 Estimated Total Size (MB): 99.79 ------------------------------------------------------------------------------- {'total_params': 24743624, 'trainable_params': 24637384} ``` ## 3.模型训练 ```py # 模型训练相关配置,准备损失计算方法,优化器和精度计算方法 model.prepare(paddle.optimizer.Adam(learning_rate=lr, parameters=model.parameters()), paddle.nn.CrossEntropyLoss(), paddle.metric.Accuracy()) # 模型训练 model.fit(train_data=train_dataset, #训练数据集 eval_data=eval_dataset, #测试数据集 batch_size=batch_size, #一个批次的样本数量 epochs=27, #迭代轮次 save_dir="/home/aistudio/lup", #把模型参数、优化器参数保存至自定义的文件夹 save_freq=3, #设定每隔多少个epoch保存模型参数及优化器参数 verbose=1 ) ``` ``` step 898/898 [==============================] - loss: 1.8075 - acc: 0.2449 - 53ms/step save checkpoint at /home/aistudio/lup/0 Eval begin... step 113/113 [==============================] - loss: 1.7850 - acc: 0.2530 - 23ms/step Eval samples: 3589 ``` ## 4.模型评估测试 ```py model.evaluate(eval_dataset, batch_size=5, verbose=1) ``` ``` Eval begin... step 718/718 [==============================] - loss: 1.9499 - acc: 0.4870 - 22ms/step Eval samples: 3589 {'loss': [1.9498544], 'acc': 0.48704374477570356} ``` # 四、预测 ## 1.对预测数据处理 ```py def load_test(img_path): img = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB) #resize img = cv2.resize(img,(imagesize,imagesize)) img = np.array(img).astype('float32') # HWC to CHW img = img.transpose((2,0,1)) img = np.expand_dims(img, axis=0) #Normalize img = img / 255 return img test_dataset=[] for i in os.listdir(test_file): test_dataset.append(load_test(test_file+'//'+i)) ``` ## 2.对模型预测 ```py # 进行预测操作 result = model.predict(test_dataset) # 定义产出数字与表情的对应关系 face={0:'anger',1:'disgust',2:'fear',3:'happy',4:'sad',5:'surprised',6:'normal'} # 定义画图方法 def show_img(img, predict): plt.figure() plt.title('predict: {}'.format(face[predict])) plt.imshow(img.reshape([3, 32, 32]).transpose(1,2,0)) plt.show() # 抽样展示 indexs = [4, 15, 45,] for idx in indexs: show_img(test_dataset[idx][0], np.argmax(result[0][idx])) ``` ``` Predict begin... step 3589/3589 [==============================] - 21ms/step Predict samples: 3589 ``` ![img]() ![img]() ![img]() # 五、效果展示 ![](https://ai-studio-static-online.cdn.bcebos.com/9157e550a7ff42b48afd4dc33a016edb3ddbed826b9e40dfa5beb8e4bb28e7ca) # 五、总结与升华 1.在图像分类中输出数要大于所分图像类数。 2.对于维度缺失问题可以用img = np.expand_dims(img, axis=0)增加维度。 # 六、个人介绍 > 太原理工大学 软件学院 软件工程专业 2020级 本科生 王志洲 >AIstudio地址链接:[https://aistudio.baidu.com/aistudio/personalcenter/thirdview/559770](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/559770) >码云地址链接:[https://gitee.com/wang-zhizhou_1](https://gitee.com/wang-zhizhou_1)