# U-2-Net **Repository Path**: wanganzhi666/U-2-Net ## Basic Information - **Project Name**: U-2-Net - **Description**: The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection." - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-23 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # U^2-Net (U square net) The code for our newly accepted paper **U^2-Net (U square net)** in Pattern Recognition 2020: ## [U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection](https://www.sciencedirect.com/science/article/pii/S0031320320302077?dgcid=author) [Xuebin Qin](https://webdocs.cs.ualberta.ca/~xuebin/),
[Zichen Zhang](https://webdocs.cs.ualberta.ca/~zichen2/),
[Chenyang Huang](https://chenyangh.com/),
[Masood Dehghan](https://sites.google.com/view/masooddehghan),
[Osmar R. Zaiane](http://webdocs.cs.ualberta.ca/~zaiane/) and
[Martin Jagersand](https://webdocs.cs.ualberta.ca/~jag/). __Contact__: xuebin[at]ualberta[dot]ca ## Updates !!! **(2020-May-18)** The official paper of our **U^2-Net (U square net)** ([**PDF in elsevier**(free until July 5 2020)](https://www.sciencedirect.com/science/article/pii/S0031320320302077?dgcid=author), [**PDF in arxiv**](http://arxiv.org/abs/2005.09007)) is now available. If you are not able to access that, please feel free to drop me an email. **(2020-May-16)** We fixed the upsampling issue of the network. Now, the model should be able to handle **arbitrary input size**. (Tips: This modification is to facilitate the retraining of U^2-Net on your own datasets. When using our pre-trained model on SOD datasets, please keep the input size as 320x32 to guarantee the performance.) **(2020-May-16)** We highly appreciate **Cyril Diagne** for building this fantastic AR project: [**AR Copy and Paste**](https://github.com/cyrildiagne/ar-cutpaste) using our **U^2-Net** (Qin *et al*, PR 2020) and [**BASNet**](https://github.com/NathanUA/BASNet)(Qin *et al*, CVPR 2019). The [**demo video**](https://twitter.com/cyrildiagne/status/1256916982764646402) in twitter has achieved over **5M** views, which is phenomenal and shows us more application probabilities of SOD. ## U^2-Net Results (176.3 MB) ![U^2-Net Results](figures/u2netqual.png) ## Our previous work: [BASNet (CVPR 2019)](https://github.com/NathanUA/BASNet) ## Required libraries Python 3.6 numpy 1.15.2 scikit-image 0.14.0 PIL 5.2.0 PyTorch 0.4.0 torchvision 0.2.1 glob ## Usage 1. Clone this repo ``` git clone https://github.com/NathanUA/U-2-Net.git ``` 2. Download the pre-trained model [u2net.pth (176.3 MB)](https://drive.google.com/file/d/1ao1ovG1Qtx4b7EoskHXmi2E9rp5CHLcZ/view?usp=sharing) or [u2netp.pth (4.7 MB)](https://drive.google.com/file/d/1rbSTGKAE-MTxBYHd-51l2hMOQPT_7EPy/view?usp=sharing) and put it into the dirctory './saved_models/u2net/' and './saved_models/u2netp/' 3. Cd to the directory 'U-2-Net', run the train or inference process by command: ```python u2net_train.py``` or ```python u2net_test.py``` respectively. The 'model_name' in both files can be changed to 'u2net' or 'u2netp' for using different models. We also provide the predicted saliency maps ([u2net results](https://drive.google.com/file/d/1mZFWlS4WygWh1eVI8vK2Ad9LrPq4Hp5v/view?usp=sharing),[u2netp results](https://drive.google.com/file/d/1j2pU7vyhOO30C2S_FJuRdmAmMt3-xmjD/view?usp=sharing)) for datasets SOD, ECSSD, DUT-OMRON, PASCAL-S, HKU-IS and DUTS-TE. ## U^2-Net Architecture ![U^2-Net architecture](figures/U2NETPR.png) ## Quantitative Comparison ![Quantitative Comparison](figures/quan_1.png) ![Quantitative Comparison](figures/quan_2.png) ## Qualitative Comparison ![Qualitative Comparison](figures/qual.png?raw=true) ## Citation ``` @InProceedings{Qin_2020_PR, title = {U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection}, author = {Qin, Xuebin and Zhang, Zichen and Huang, Chenyang and Dehghan, Masood and Zaiane, Osmar and Jagersand, Martin}, journal = {Pattern Recognition}, volume = {106}, pages = {107404}, year = {2020} } ```