# SKNet **Repository Path**: wangchsoft/SKNet ## Basic Information - **Project Name**: SKNet - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-07-19 - **Last Updated**: 2021-07-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SKNet Implemenation of [Selective Kernel Networks](https://arxiv.org/abs/1903.06586) by pytorch. The architecture of **SK** is as follows ![](IMG/SKConv.png) I trained **SKNet50** on ImageNet-2012 from scratch and got an accuracy of **21.26**, which did not reach the performance of **20.79** in the paper. _If somebody know what caused the problem, please leave me a message._ The pretrained weights are provided below. ## Requirement - `pytorch 1.4.0+` - `torchvision` - `tensorboard 1.14+` - `numpy` - `pyyaml` - `tqdm` - `pillow` ## Dataset - `ImageNet-2012` ## Pretrained Model on ImageNet-2012 | Architecture | Top-1 error | Pretrained model| | :----: | :----: | :----: | | SKNet50
(My Imp.) | 21.26 | [Google Drive](https://drive.google.com/open?id=1h6NIwSemMrFDk4DWT7-Zdm9kolHljyZU)
[Baidu Netdisk](https://pan.baidu.com/s/1XTuMDqFuzljxmlfC2TKTyg) | | SKNet50
([paper](https://arxiv.org/abs/1903.06586)) | 20.79 | None | #### If you want to use my pretrained weight, you should do 1. place the downloaded pretrained model in `runs/sknet_imagenet/86028` folder under this project 2. config the attribute of **runid** and **cuda** in the config file `configs/sknet_imagenet.yml` 3. run `validata.py` or `test.py` (For test, you should specify the `img_path` in the [test.py](/test.py)) #### The error curve of SKNet50 during my training process is shown below
error curve