# libtorch-yolov3 **Repository Path**: wangmingMY/libtorch-yolov3 ## Basic Information - **Project Name**: libtorch-yolov3 - **Description**: A Libtorch implementation of the YOLO v3 object detection algorithm - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-28 - **Last Updated**: 2022-02-22 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # libtorch-yolov3 A Libtorch implementation of the YOLO v3 object detection algorithm, written with pure C++. It's fast, easy to be integrated to your production, and CPU and GPU are both supported. Enjoy ~ This project is inspired by the [pytorch version](https://github.com/ayooshkathuria/pytorch-yolo-v3), I rewritten it with C++. ## Requirements 1. LibTorch v1.0.0 2. Cuda 3. OpenCV (just used in the example) ## To compile 1. cmake3 2. gcc 5.4 + ``` mkdir build && cd build cmake3 -DCMAKE_PREFIX_PATH="your libtorch path" .. # if there are multi versions of gcc, then tell cmake which one your want to use, e.g.: cmake3 -DCMAKE_PREFIX_PATH="your libtorch path" -DCMAKE_C_COMPILER=/usr/local/bin/gcc -DCMAKE_CXX_COMPILER=/usr/local/bin/g++ .. ``` ## Running the detector The first thing you need to do is to get the weights file for v3: ``` cd models wget https://pjreddie.com/media/files/yolov3.weights ``` On Single image: ``` ./yolo-app ../imgs/person.jpg ``` As I tested, it will take 25 ms on GPU ( 1080 ti ). please run inference job more than once, and calculate the average cost.