# RDPG-Biped **Repository Path**: wangxiaopeng2/RDPG-Biped ## Basic Information - **Project Name**: RDPG-Biped - **Description**: rdpg - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-01-08 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # RDPG-Biped Code for 'Recurrent Network-based Deterministic Policy Gradient for Solving Bipedal Walking Challenge on Rugged Terrains' https://arxiv.org/abs/1710.02896 1) Environment: Miniconda is recommended as pybox does not support pip - python 2.7: print format might become an issue with python 3 but other than that, is fine - numpy, scipy, matplotlib: up-to-date - tensorflow 1.2 : higher versions are fine and TF-GPU compatible - OpenAI gym and pybox: for gym, download the files in 'gym-files.tar.gz' and replace 'bipedal_walk.py(many other versions are provided in the tar file)' and 'time_limit.py' into the original files 2) Run default model (Our RDPG) - learn and run: run 'gym_ddpg.py' - be sure to make proper 'checkpoint' files for both 'saved_' folders and 'gym_ddpg' folder inside 'results' directory - record: run 'tester_r.py' - display: run 'display.py' in 'results' directory 3) Other models - DDPG(Feedforward network-based DPG): d3_9 - RDPG with parameter noise: r17_41_opt0 - Our RDPG with experience injection: TBA