# Federated-Learning **Repository Path**: wardseptember/Federated-Learning ## Basic Information - **Project Name**: Federated-Learning - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-16 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Federated-Learning We implement the paper [Communication-Efficient Learning of Deep Networks from Decentralized Data](https://arxiv.org/abs/1602.05629). Its blog is [here](https://research.googleblog.com/2017/04/federated-learning-collaborative.html). We wish to explore several possible approaches: 1. server pulling gradient update from clients; 2. clients eagerly train and push updates to server; 3. extend to multi-server; servers gossip to sync; 4. client-only p2p gradient updates