# image_segmentation_dl **Repository Path**: weijujie/image_segmentation_dl ## Basic Information - **Project Name**: image_segmentation_dl - **Description**: :bread: 基于深度学习方法的图像分割(含语义分割、实例分割、全景分割)。 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 1 - **Created**: 2020-08-24 - **Last Updated**: 2021-11-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Image_Segmentation 基于深度学习的图像分割。图像分割包括语义分割、实例分割、全景分割。 ## 语义分割模型 - FCN - DeconvNet - SegNet - UNet - PSPNet - RefineNet - GCN - DeepLab(v1&v2&v3&v3+) - PAN - Auto-DeepLab - NAS - … ## 模型架构、代码复现等 ### 语义分割论文 - [Semantic Segmentation | Zhang Bin's Blog]() - [Segmentation - handong1587]() - [语义分割 - Semantic Segmentation Papers - AIUAI]() ### 模型和复现 - [mrgloom/awesome-semantic-segmentation]() - [guanfuchen/semseg]() - 常用的语义分割架构结构综述以及代码复现 - [GeorgeSeif/Semantic-Segmentation-Suite]() - Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily! - [guanfuchen/DeepNetModel]() - 记录每一个常用的深度模型结构的特点(图和代码) - [handong1587.github.io/2015-10-09-segmentation.md]() ### 计算机视觉论文 - [amusi/CVPR2019-Code: CVPR 2019 Paper with Code]() - [zziz/pwc: Papers with code. Sorted by stars]() - [amusi/daily-paper-computer-vision]() ## 代码实践 常看到代码中定义: ``` python R = 103.939 G = 116.779 B = 123.68 ``` 什么意思?请看这里一个回答:https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3#gistcomment-1616734 > Also, there is no normalization done in the gist above. If you want accurate results, you better do those steps to any input image: > > ``` python > img = cv2.resize(cv2.imread('../../Downloads/cat2.jpg'), (224, 224)) > > mean_pixel = [103.939, 116.779, 123.68] > img = img.astype(np.float32, copy=False) > for c in range(3): > img[:, :, c] = img[:, :, c] - mean_pixel[c] > img = img.transpose((2,0,1)) > img = np.expand_dims(img, axis=0) > ``` > > The mean pixel values are taken from the VGG authors, which are the values computed from the training dataset. ## 最新: - FDNet:学习全密集神经网络进行图像语义分割 > 《Learning Fully Dense Neural Networks for Image Semantic Segmentation》(AAAI 2019) > > Date:2019 | Author:香港科技大学&微软亚洲研究院 > > arXiv: - 基于MobileNetV3的DeepLab V3+语义分割 > Mobile Deeplab-V3+ model for Segmentation > > This project is used for deploying people segmentation model to mobile device and learning. The people segmentation android project is here. The model is... > > arXiv: - 遥感语义图像的边界损失 > 《Boundary Loss for Remote Sensing Imagery Semantic Segmentation》 > > Date:20190521 | Author: Aeronet > > arXiv: - HRNet:(告别低分辨率网络,微软提出高分辨率深度神经网络HRNet) > 《Deep High-Resolution Representation Learning for Human Pose Estimation》 > > arXiv: > > [1] Ke Sun, Bin Xiao, Dong Liu, Jingdong Wang: Deep High-Resolution Representation Learning for Human Pose Estimation. CVPR 2019 > > [2] https://github.com/leoxiaobin/deep-high-resolution-net.pytorch > > [3] https://github.com/HRNet > > ——from:[CVPR 2019 | 告别低分辨率网络,微软提出高分辨率深度神经网络HRNet](https://mp.weixin.qq.com/s/R9eG3FvvBcl-bGgJEF1uoA) > 《Deep High-Resolution Representation Learning for Human Pose Estimation》的原作者不仅把这种高分辨率网络结构用于姿态估计,也在尝试用于其他方向。 > > 不久前,作者在新论文《High-Resolution Representations for Labeling Pixels and Regions》中对网络结构进行了v2版本升级,给出了更多实验结果,更加验证了该网络结构的价值! > > 在计算机视觉目前最热门应用领域语义分割、目标检测、人脸特征点定位中,换用高分辨率网络结构的算法都获得了显著的精度提升! > > arXiv: - 《Hard Pixels Mining: Learning Using Privileged Information for Semantic Segmentation》 > 注:在NYU-v2数据集上,超越DeepLabV3+、PSPNet、RDFNet > > Date:2019 Author:上海交通大学 > > arXiv: