# image_segmentation_dl
**Repository Path**: weijujie/image_segmentation_dl
## Basic Information
- **Project Name**: image_segmentation_dl
- **Description**: :bread: 基于深度学习方法的图像分割(含语义分割、实例分割、全景分割)。
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 1
- **Forks**: 1
- **Created**: 2020-08-24
- **Last Updated**: 2021-11-16
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Image_Segmentation
基于深度学习的图像分割。图像分割包括语义分割、实例分割、全景分割。
## 语义分割模型
- FCN
- DeconvNet
- SegNet
- UNet
- PSPNet
- RefineNet
- GCN
- DeepLab(v1&v2&v3&v3+)
- PAN
- Auto-DeepLab
- NAS
- …
## 模型架构、代码复现等
### 语义分割论文
- [Semantic Segmentation | Zhang Bin's Blog]()
- [Segmentation - handong1587]()
- [语义分割 - Semantic Segmentation Papers - AIUAI]()
### 模型和复现
- [mrgloom/awesome-semantic-segmentation]()
- [guanfuchen/semseg]() - 常用的语义分割架构结构综述以及代码复现
- [GeorgeSeif/Semantic-Segmentation-Suite]() - Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!
- [guanfuchen/DeepNetModel]() - 记录每一个常用的深度模型结构的特点(图和代码)
- [handong1587.github.io/2015-10-09-segmentation.md]()
### 计算机视觉论文
- [amusi/CVPR2019-Code: CVPR 2019 Paper with Code]()
- [zziz/pwc: Papers with code. Sorted by stars]()
- [amusi/daily-paper-computer-vision]()
## 代码实践
常看到代码中定义:
``` python
R = 103.939
G = 116.779
B = 123.68
```
什么意思?请看这里一个回答:https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3#gistcomment-1616734
> Also, there is no normalization done in the gist above. If you want accurate results, you better do those steps to any input image:
>
> ``` python
> img = cv2.resize(cv2.imread('../../Downloads/cat2.jpg'), (224, 224))
>
> mean_pixel = [103.939, 116.779, 123.68]
> img = img.astype(np.float32, copy=False)
> for c in range(3):
> img[:, :, c] = img[:, :, c] - mean_pixel[c]
> img = img.transpose((2,0,1))
> img = np.expand_dims(img, axis=0)
> ```
>
> The mean pixel values are taken from the VGG authors, which are the values computed from the training dataset.
## 最新:
- FDNet:学习全密集神经网络进行图像语义分割
> 《Learning Fully Dense Neural Networks for Image Semantic Segmentation》(AAAI 2019)
>
> Date:2019 | Author:香港科技大学&微软亚洲研究院
>
> arXiv:
- 基于MobileNetV3的DeepLab V3+语义分割
> Mobile Deeplab-V3+ model for Segmentation
>
> This project is used for deploying people segmentation model to mobile device and learning. The people segmentation android project is here. The model is...
>
> arXiv:
- 遥感语义图像的边界损失
> 《Boundary Loss for Remote Sensing Imagery Semantic Segmentation》
>
> Date:20190521 | Author: Aeronet
>
> arXiv:
- HRNet:(告别低分辨率网络,微软提出高分辨率深度神经网络HRNet)
> 《Deep High-Resolution Representation Learning for Human Pose Estimation》
>
> arXiv:
>
> [1] Ke Sun, Bin Xiao, Dong Liu, Jingdong Wang: Deep High-Resolution Representation Learning for Human Pose Estimation. CVPR 2019
>
> [2] https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
>
> [3] https://github.com/HRNet
>
> ——from:[CVPR 2019 | 告别低分辨率网络,微软提出高分辨率深度神经网络HRNet](https://mp.weixin.qq.com/s/R9eG3FvvBcl-bGgJEF1uoA)
> 《Deep High-Resolution Representation Learning for Human Pose Estimation》的原作者不仅把这种高分辨率网络结构用于姿态估计,也在尝试用于其他方向。
>
> 不久前,作者在新论文《High-Resolution Representations for Labeling Pixels and Regions》中对网络结构进行了v2版本升级,给出了更多实验结果,更加验证了该网络结构的价值!
>
> 在计算机视觉目前最热门应用领域语义分割、目标检测、人脸特征点定位中,换用高分辨率网络结构的算法都获得了显著的精度提升!
>
> arXiv:
- 《Hard Pixels Mining: Learning Using Privileged Information for Semantic Segmentation》
> 注:在NYU-v2数据集上,超越DeepLabV3+、PSPNet、RDFNet
>
> Date:2019 Author:上海交通大学
>
> arXiv: