# TransImbAMP **Repository Path**: welljason/TransImbAMP ## Basic Information - **Project Name**: TransImbAMP - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-10-13 - **Last Updated**: 2023-10-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Antimicrobial peptide prediction with transformer and imbalanced learning This is a method for integrating transformer and imbalanced multi-label learning to identify the functional activities of targets for antimicrobial peptides ## Requirements We have already integrate the environment in `env.yaml`. execute `conda create -f env.yaml` to install packages required in a new created `DEEPSEQENV` conda env. The environment is based on `pytorch=1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0`. You may refer to [here](https://pytorch.org/get-started/) to custom the pytorch environment for your own machine. Enter the enviornment with `conda activate DEEPSEQENV` before further executions. ## Training establishment Execute `train.py` to start a training process for establishing AMP prediction model with different missions (make sure the pretrained tape model is downloaded before training). For example, to train a model for AMP identification with proper hyper-parameters, you can run: ``` python train.py --cuda --seed 810 --task "AMP" --lr 0.03 --ckpt-iter 60 -e 256 -b 64 -d "trial-amp" ``` to train a model for functional activity prediction, for instance, simply run: ``` python train.py --cuda --task "mtl" -d "trial-mtl" ``` For more information about parser arguments, please refer to the `train.py`. ## Evaluation To evaluate the model, you can use `evaluate.py` with parsing the well-trained result path. For example, for the mentioned AMP identification trial: ``` python evaluate.py --path "./trial-amp" --cuda True ```