# HOPE **Repository Path**: wenb11/HOPE ## Basic Information - **Project Name**: HOPE - **Description**: No description available - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-03-04 - **Last Updated**: 2025-03-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # HOPE: A Reinforcement Learning-based Hybrid Policy Path Planner for Diverse Parking Scenarios ![pipeline](assets/algo_struct.png) This repository contains code for the paper [HOPE: A Reinforcement Learning-based Hybrid Policy Path Planner for Diverse Parking Scenarios](https://arxiv.org/abs/2405.20579). This work proposes a novel solution to the path-planning task in parking scenarios. The planner integrates a reinforcement learning agent with Reeds-Shepp curves, enabling effective planning across diverse scenarios. HOPE guides the exploration of the reinforcement learning agent by applying an action mask mechanism and employs a transformer to integrate the perceived environmental information with the mask. Our approach achieved higher planning success rates compared with typical rule-based algorithms and traditional reinforcement learning methods, especially in challenging cases. ## Examples ### Simulation cases ![simulation](assets/examples.jpg) ### Realworld demo [https://www.youtube.com/watch?v=62w9qhjIuRI](https://www.youtube.com/watch?v=62w9qhjIuRI) ![realworld](assets/realworld-cases.jpg) ## Setup 1. Install conda or miniconda 2. Clone the repo and build the environment ```Shell git clone https://github.com/jiamiya/HOPE.git cd HOPE conda create -n HOPE python==3.8 conda activate HOPE pip3 install -r requirements.txt ``` and install pytorch from [https://pytorch.org/](https://pytorch.org/). ## Usage ### Run a pre-trained agent ```Shell cd src python ./evaluation/eval_mix_scene.py ./model/ckpt/HOPE_SAC0.pt --eval_episode 10 --visualize True ``` You can find some other pre-trained weights in ``./src/model/ckpt``. ### Train the HOPE planner ```Shell cd src python ./train/train_HOPE_sac.py ``` or ```Shell python ./train/train_HOPE_ppo.py ``` ## Citation If you find our work useful, please cite us as ```bibtex @article{jiang2024hope, title={HOPE: A Reinforcement Learning-based Hybrid Policy Path Planner for Diverse Parking Scenarios}, author={Jiang, Mingyang and Li, Yueyuan and Zhang, Songan and Chen, Siyuan and Wang, Chunxiang and Yang, Ming}, journal={arXiv preprint arXiv:2405.20579}, year={2024} } ```