# quad_comp **Repository Path**: wenb11/quad_comp ## Basic Information - **Project Name**: quad_comp - **Description**: 四足机器人控制、强化学习等算法设计 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-02-27 - **Last Updated**: 2024-02-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # **Compare different algorithm for quadruped** ![trot in place](https://wanghg1992.github.io/picture/fig1_trot_in_place.png) # 1. introduction ## 1.1 classic control - plan: body trajectory optimization(TO) - control: optimized whole body control with null space projection(OP-NSP-WBC) - dynamic: pinocchio - optimal problem solver: casadi ## 1.2 reinforce learning - algorithm: ppo - input: robot states - output: foot velocity ## 1.3 visualization - rviz - urdf: robot - trajectory: body, foot - point: body, foot, zmp # 2. install ## 2.1 dependency - install anaconda or miniconda, and new environment named py37: ```shell script - git clone git@github.com:wanghg1992/quad_comp.git --recurse-submodules - cd quad_comp/ - conda env create -f environment.yml ``` ## 2.2 install gym-quad-env ```shell script - cd quad_comp/ - pip3 install -e simulation_environment/ ``` # 3. run ## 3.1 run classic control roscore\ ./run_classic_control.sh ## 3.2 run rl train roscore\ ./run_baseline_ppo.sh ## 3.3 run visualization roscore\ ./run_visualization.sh ## 3.4 test simulation environment roscore\ ./test_simulation.sh