# multi_prec_nas_object_detection **Repository Path**: wheatrabbit/multi_prec_nas_object_detection ## Basic Information - **Project Name**: multi_prec_nas_object_detection - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-02-20 - **Last Updated**: 2025-04-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README **NEW RELEASE: we released our new, engineered and user-friendly DNAS library named [PLiNIO](https://github.com/eml-eda/plinio) which includes channel-wise precision assignement among the different implemented methods. We highly suggest to try this new release for your experiments!** Copyright (C) 2022 Politecnico di Torino, Italy. SPDX-License-Identifier: Apache-2.0. See LICENSE file for details. Authors: Matteo Risso, Alessio Burrello, Luca Benini, Enrico Macii, Massimo Poncino, Daniele Jahier Pagliari # multi-prec-nas ## Reference If you use our code in your experiments, please make sure to cite our paper: ``` @INPROCEEDINGS{9969373, author={Risso, Matteo and Burrello, Alessio and Benini, Luca and Macii, Enrico and Poncino, Massimo and Pagliari, Daniele Jahier}, booktitle={2022 IEEE 13th International Green and Sustainable Computing Conference (IGSC)}, title={Channel-wise Mixed-precision Assignment for DNN Inference on Constrained Edge Nodes}, year={2022}, volume={}, number={}, pages={1-6}, doi={10.1109/IGSC55832.2022.9969373}} ``` ## Datasets The current version support the following datasets and tasks taken from the benchmark suite MLPerf Tiny: - CIFAR10 - Image Classification. - MSCOCO - Visual Wake Words. - Google Speech Commands v2 - Keyword Spotting. - ToyADMOS - Anomaly Detection ## How to run ### Image Classification 1. Visit the folder: `cd image_classification`. 2. Run the provided shell script `run_ic.sh`: ``` source run_ic.sh 0 resnet8_w248a248_multiprec search ft ``` ### Visual Wake Words 1. Run the provided `Makefile` to download the desired dataset: `make vww-init`. 2. Visit the folder: `cd visual_wake_words`. 3. Run the provided shell script `run_vww.sh`: ``` source run_vww.sh 0 mobilenetv1_w248a248_multiprec search ft ``` ### Keyword Spotting 1. Visit the folder: `cd keyword_spotting`. 2. Run the provided shell script `run_kws.sh`: ``` source run_kws.sh 0 dscnn_w248a248_multiprec search ft ``` ### Anomaly Detection 1. Run the provided `Makefile` to download the desired dataset: `make andet-init`. 2. Visit the folder: `cd anomaly_detection`. 3. Run the provided shell script `run_andet.sh`: ``` source run_andet.sh 0 denseae_w248a248_multiprec search ft ``` ### Object Detection 1. Visit the folder: `cd object_detection`. 2. Run the provided shell script `run_od.sh`: ``` source run_od.sh 0 yolov5_w248a248_multiprec search ft source run_od.sh 0.01 0 yolov5_w248a248_multiprec search ft 后台运行 nohup ./run_od.sh 0.01 0 yolov5_w248a248_multiprec search ft > output.log 2>&1 & 怀疑压缩是不是太狠了,调低一手cd nohup ./run_od.sh 0.01 0 yolov5_w248a248_multiprec search ft > output.log 2>&1 & nohup ./run_od.sh 0.1 0 yolov5_w248a248_multiprec search ft > output.log 2>&1 & nohup ./run_od.sh 1.5 0 yolov5_w248a248_multiprec search ft > output.log 2>&1 & nohup ./run_od.sh 2.0 0 yolov5_w248a248_multiprec search ft > output.log 2>&1 & source run_od.sh 0.01 0 yolov5_w248a248_multiprec search ft ``` ## License This code is released under Apache 2.0, see the LICENSE file in the root of this repository for details.