# DSwinIR **Repository Path**: whs075/DSwinIR ## Basic Information - **Project Name**: DSwinIR - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2026-01-26 - **Last Updated**: 2026-01-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DSwinIR > **Paper**: DSwinIR: Rethinking Window-based Attention for Image Restoration > > **Author**: [Gang Wu](https://scholar.google.com/citations?user=JSqb7QIAAAAJ), [Junjun Jiang](http://homepage.hit.edu.cn/jiangjunjun)*, [Kui Jiang](https://homepage.hit.edu.cn/jiangkui), [Xianming Liu](http://homepage.hit.edu.cn/xmliu), and [Liqiang Nie](https://liqiangnie.github.io/) ## Overview > **TL;DR:** We rethink window-based attention and propose **Deformable Sliding Window (DSwin) Attention** — a token-centric, content-aware mechanism that eliminates boundary artifacts and adapts receptive fields to image content. - 🎯 **Token-Centric Sliding Window**: Every token attends within its own centered neighborhood, eliminating boundary blindness. - 🧠 **Content-Aware Deformable Sampling**: Learned offsets dynamically shape the receptive field to focus on informative regions. ## Datasets ### All-in-One Image Restoration |Setting| Dataset| |---|---| |Noise-Rain-Haze|[WED](http://ivc.uwaterloo.ca/database/WaterlooExploration/exploration_database_and_code.rar),[BSD](https://drive.google.com/file/d/1idKFDkAHJGAFDn1OyXZxsTbOSBx9GS8N/view?usp=sharing),[Rain100L](https://drive.google.com/drive/folders/1-_Tw-LHJF4vh8fpogKgZx1EQ9MhsJI_f?usp=sharing),[OTS](https://sites.google.com/view/reside-dehaze-datasets/reside-v0)| |AllWeather|[Download](https://drive.google.com/file/d/1tfeBnjZX1wIhIFPl6HOzzOKOyo0GdGHl/view?usp=sharing)| ## Results ### All-in-one Image Restoration |Three-Task| Rain | Haze | n15| n15| n50| |---|---|---|---|---|---| |DSwinIR|[Download](https://drive.google.com/file/d/1Djxn_lmiHQxKmAISvwVjHok_Pyvpk9z9/view?usp=drive_link)|[Download](https://drive.google.com/file/d/1qp8-o8v0kCvDjFZVcvOYzl7vVLDeXZ1a/view?usp=drive_link)|[Download](https://drive.google.com/file/d/1PZWUX_4-JS7L-GXySRira2vwygdPFpXV/view?usp=sharing)|[Download](https://drive.google.com/file/d/1xCEfy8W-nUwvn5eFO5BFSfEWUxTXvFLm/view?usp=drive_link)|[Download](https://drive.google.com/file/d/1te6KZA789jXTW_DlQEAGKsTCoPBucRDg/view?usp=drive_link)| |WeatherBench| Rain| Haze| Snow| |---|---|---|---| |DSwinIR|[Download](https://drive.google.com/file/d/1z11FkQ7rY3AYpQyv3IdNWyD8ZX4PJylK/view?usp=drive_link)|[Download](https://drive.google.com/file/d/1vSjVgUgYM77K-lcekgWFtMfmfbmeghap/view?usp=drive_link)|[Download](https://drive.google.com/file/d/1YeeWm88cZzpZylffmzGCQISfXg5wDlkT/view?usp=sharing)| |AllWeather| Outdoor-Rain | RainDrop | Snow-L| Snow-S| |---|---|---|---|---| |DSwinIR| [Download](https://drive.google.com/drive/folders/1V6V4jcnyUeUE_iqF0JDbQsT0Fd4Dm-ee?usp=sharing)|[Download](https://drive.google.com/drive/folders/1V6V4jcnyUeUE_iqF0JDbQsT0Fd4Dm-ee?usp=sharing)|[Download](https://drive.google.com/drive/folders/1V6V4jcnyUeUE_iqF0JDbQsT0Fd4Dm-ee?usp=sharing)|[Download](https://drive.google.com/drive/folders/1V6V4jcnyUeUE_iqF0JDbQsT0Fd4Dm-ee?usp=sharing)| ### Single-Task Image Restoration |Task|PSNR/SSIM|Results|Pretrained| |---|---|---|---| |Rain100L|38.19/0.984|[Results](https://drive.google.com/file/d/1jCBqB3C32OfqyOyfUYYAd7asUisfl_Ox/view?usp=sharing)|[Model](https://drive.google.com/file/d/1yQcnuRUepg9NW5DVh3MmBFlA-H1r7y7E/view?usp=sharing)| |Task|PSNR/SSIM|Results| |---|---|---| |SPA|49.19/0.993|[Results](https://drive.google.com/file/d/1qj2RkgTSDnA_1a-jzztvdVd4gavDb-3B/view?usp=sharing)| ## Acknowledgment We thank a lot for their nice sharing, including [DRSformer](https://github.com/cschenxiang/DRSformer?tab=readme-ov-file), [AirNet](https://github.com/XLearning-SCU/2022-CVPR-AirNet), [Transweather](https://github.com/jeya-maria-jose/TransWeather), [Histoformer](https://github.com/sunshangquan/Histoformer/tree/main), and [BasicSR](https://github.com/XPixelGroup/BasicSR). ## 📖 Citation If you find this work helpful, please consider citing: ```bibtex @article{wu2025dswinir, title={DSwinIR: Rethinking Window-based Attention for Image Restoration}, author={Wu, Gang and Jiang, Junjun and Jiang, Kui and Liu, Xianming and Nie, Liqiang}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, year={2025} } ```