# MuST
**Repository Path**: whu-dft/MuST
## Basic Information
- **Project Name**: MuST
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: BSD-3-Clause
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2024-05-27
- **Last Updated**: 2024-06-05
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
MuST (Multiple Scattering Theory) is an ab initio electronic structure calculation software suite, with petascale and beyond computing capability, for the first principles study of quantum phenomena in disordered materials.
It is capable of performing
- KKR for ordered structures
- KKR-CPA for random structures (with/without short range chemical order)
- LSMS calculations for large systems
- Kubo-Greenwood method for residual resistivity calculation
- ...and many more upcoming features!
This repository is actively developed and maintained - please check for regular updates!
## User Guide
All the relevant information and instructions are provided in the documentation
Please check out the Singularity image for simplicity.
## Available Scientific Packages
- MST: Perform KKR, LSMS, single-site and Cluster Averaged KKR-CPA.
- lsms: Peform LSMS and Wang-Landau LSMS. This package is built for extreme performance on petascale/exascale systems.
- KUBO : Perform first-principles electrical conductivity calculation.
### User Support Folders
- Potentials folder contains the starting potential for selected elements.
- architecture folder contains preset makefile parameters ("architecture files") for a wide variety of computer systems
- docs folder contains install instructions, license information, and users guide.
- external folder contains external libraries required or optionally required by MuST, e.g., FFTW, Lua, P3DFFT, and LibXC.
- Tutorials folder contains hands-on exercises and training materials.
- ase_must folder provides Atomic Simulation Environment (ASE) support for MuST.
## Selected references
### KKR Method/Multiple Scattering Theory
* J. Korringa, _On the calculation of the energy of a Bloch wave in a metal_, Physica **13**, 392 (1947).
* W. Kohn and N. Rostoker, _Solution of the Schrodinger equation in periodic lattices with an application to metallic Lithium_, Phys. Rev. **94**, 1111 (1954).
* J. S. Faulkner and G. M. Stocks, _Calculating properties with the coherent-potential approximation_, Phys. Rev. B **21**, 3222 (1980).
* A. Gonis, _Green functions for ordered and disordered systems_, North-Holland Amsterdam, 1992
* A. Gonis and W. H. Butler, _Multiple Scattering in Solids_, (Graduate Texts in Contemporary Physics), Springer 1999.
* J. Zabloudil, R. Hammerling, L. Szunyogh, and P. Weinberger, _Electron Scattering in Solid Matter: A Theoretical and Computational Treatise_, (Springer Series in Solid-State Sciences), Springer 2004.
* H. Ebert, D. Kodderitzsch and J. Minar, _Calculating condensed matter properties using the KKR-Green's function method - recent developments and applications_, Rep. Prog. Phys. **74**, 096501 (2011).
* J.S. Faulkner, G.M. Stocks, and Y. Wang, _Multiple Scattering Theory: Electronic Structure of Solids_, IOP Publishing Ltd. 2019.
### KKR-CPA Method
* P. Soven, _Coherent-Potential Model of Substitutional Disordered Alloys_, Phys. Rev. **156**, 809 (1967).
* B. Velicky, S. Kirkpatrick, and H. Ehrenreich, _Single-Site Approximations in the Electronic Theory of Simple Binary Alloys_, Phys. Rev. **175**, 747 (1968).
* B. Gyorffy, _Coherent-Potential Approximation for a Nonoverlapping-Muffin-Tin-Potential Model of Random Substitutional Alloys_, Phys. Rev. B **5**, 2382 (1972).
* G. Stocks, W. Temmerman, and B. Gyorffy, _Complete Solution of the Korringa-Kohn-Rostoker Coherent-Potential-Approximation Equations: Cu-Ni Alloys_, Phys. Rev. Lett. **41**, 339 (1978).
* J. S. Faulkner and G. M. Stocks, _Calculating properties with the coherent-potential approximation_, Phys. Rev. B **21**, 3222 (1980).
* G. M. Stocks and H. Z. Winter, _Self-consistent-field-Korringa-Kohn-Rostoker-coherent-potential approximation for random alloys_, Z. Physik B-Condensed Matter **46**, 95 (1982).
*
## Citation
If you publish results obtained using LSMS we ask that you cite the following publications:
* Y. Wang, G. M. Stocks, W. A. Shelton, D. M. C. Nicholson, W. M. Temmerman, and Z. Szotek. _Order-n multiple scattering approach to electronic structure calculations_. Phys. Rev. Lett. **75**, 2867 (1995).
and if the GPU accelerated version was used, please cite additionally:
* M. Eisenbach, J. Larkin, J. Lutjens, S. Rennich, and J. H. Rogers. _GPU acceleration of the locally selfconsistent multiple scattering code for first principles calculation of the ground state and statistical physics of materials_. Computer Physics Communications **211**, 2 (2017).
and for calculations using Monte-Carlo simulations:
* M. Eisenbach, C.-G. Zhou, D. M. C. Nicholson, G. Brown, J. Larkin, and T. C. Schulthess. _A Scalable Method for Ab Initio Computation of Free Energies in Nanoscale Systems_. Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, ACM, New York, 64 (2009)