# SSSS **Repository Path**: whu-dft/SSSS ## Basic Information - **Project Name**: SSSS - **Description**: "Deep Learning and Quantum Programming" Spring School @ Song Shan Lake - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2019-08-23 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Deep Learning and Quantum Programming: A Spring School Song Shan Lake Spring School, features lectures, code challenge, install party and happy fatty night. *South Bay Interdisciplinary Science Center, Songshan Lake Materials Laboratory, Dongguan, China, 5th-10th May, 2019* ## Table of Contents 1. Deep Learning * [`lecture_notes.pdf`](https://github.com/QuantumBFS/SSSS/blob/master/1_deep_learning/lecture_notes.pdf) and [`slides/`](https://github.com/QuantumBFS/SSSS/tree/master/1_deep_learning/slides) * Demo codes * Poor man's computation graph: [`computation_graph.py`](https://github.com/QuantumBFS/SSSS/blob/master/1_deep_learning/computation_graph.py) * Variational free energy with flow model: [`realnvp/`](https://github.com/QuantumBFS/SSSS/tree/master/1_deep_learning/realnvp) * Hamiltonian inverse design with reverse mode AD: [`schrodinger.py`](https://github.com/QuantumBFS/SSSS/blob/master/1_deep_learning/schrodinger.py) * Solving the fastest descent problem with NeuralODE [`brachistochrone/`](https://github.com/QuantumBFS/SSSS/tree/master/1_deep_learning/brachistochrone) 2. Tensor Networks * [`Slides on tensor networks`](https://github.com/QuantumBFS/SSSS/blob/master/2_tensor_network/Tutorial_tensor_network.pdf) * [`Slides on contraction methods for infinite tensor networks`](https://github.com/QuantumBFS/SSSS/blob/master/2_tensor_network/tensor_contraction_methods.pdf) * [`Tutorial and demo codes on computing $2$-D Ising model partition function using tensor networks`](https://github.com/QuantumBFS/SSSS/blob/master/2_tensor_network/tensor_contraction_simple.ipynb) * [`Tutorial and demo codes on the MPS Born machine`](https://github.com/QuantumBFS/SSSS/blob/master/2_tensor_network/mps_tutorial.ipynb) 3. Julia language * [`julia-hands-on.ipynb`](https://github.com/QuantumBFS/SSSS/blob/master/3_julia/julia-hands-on.ipynb) 4. Variational Quantum Computing * Lecture Note: [`quantum_lecture_note.pdf`](https://github.com/QuantumBFS/SSSS/blob/master/4_quantum/quantum_lecture_note.pdf) * Slides: [`google slides`](https://docs.google.com/presentation/d/1jUTpa8pB3jEOWDW1U0rDTDQ-kpri8j8S4y77GQCo3iM/edit?usp=sharing) * Notebooks * The solution to the graph embeding problem: [`graph_embeding.ipynb`](https://github.com/QuantumBFS/SSSS/blob/master/4_quantum/graph_embeding.ipynb) * Quantum circuit computing with Yao.jl: [`QC-with-Yao.ipynb`](https://github.com/QuantumBFS/SSSS/blob/master/4_quantum/QC-with-Yao.ipynb) * Landscape of a quantum circuit: [`variational_quantum_circuit.ipynb`](https://github.com/QuantumBFS/SSSS/blob/master/4_quantum/variational_quantum_circuit.ipynb) * Variational quantum eigensolver: [`variational_quantum_circuit.ipynb`](https://github.com/QuantumBFS/SSSS/blob/master/4_quantum/variational_quantum_circuit.ipynb) * Matrix Product state inspired variational quantum eigensolver [`VQE_action.ipynb`](https://github.com/QuantumBFS/SSSS/blob/master/4_quantum/VQE_action.ipynb) * Quantum circuit born machine: [`qcbm_gaussian.ipynb`](https://github.com/QuantumBFS/SSSS/blob/master/4_quantum/qcbm_gaussian.ipynb) * Gradient vanishing problem: [`variational_quantum_circuit.ipynb`](https://github.com/QuantumBFS/SSSS/blob/master/4_quantum/variational_quantum_circuit.ipynb) and [`VQE_action.ipynb`](https://github.com/QuantumBFS/SSSS/blob/master/4_quantum/VQE_action.ipynb) * Mapping a quantum circuit to tensor networks: [`qc_tensor_mapping.ipynb`](https://github.com/QuantumBFS/SSSS/blob/master/4_quantum/qc_tensor_mapping.ipynb) Welcome for pull requests and issues! ## Challenge [Song-Shan-Hu Sping School Coding Challenge](Challenge.md) ## Preparation ### Quick start - [quick start for git](http://rogerdudler.github.io/git-guide/) - [quick start for command line interface](https://www.makeuseof.com/tag/a-quick-guide-to-get-started-with-the-linux-command-line/) ### Installation - [how to install ubuntu](https://tutorials.ubuntu.com/tutorial/tutorial-install-ubuntu-desktop) - [install annaconda](https://www.anaconda.com/distribution/) - [install PyTorch](https://pytorch.org/) - [install Julia](https://julialang.org) - [intall Yao.jl](https://github.com/QuantumBFS/Yao.jl#installation) ### Julia - [Julia语言的中文教程](https://github.com/Roger-luo/TutorialZH.jl) - [快速入门 Julia 语言](https://www.bilibili.com/video/av28248187?from=search&seid=5171149583764025744) - [Julia入门指引](https://discourse.juliacn.com/t/topic/159) ## Usage You can open this repo as a Julia package if you have julia installed: 1. open your Julia REPL, press `]` 2. type the following ```julia (1.0) pkg> add https://github.com/QuantumBFS/SSSS.git ``` 3. press backspace 4. type the following ```julia julia> using SSSS julia> notebooks() ``` ## License The code is released under MIT License. The rest part is released under [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/)

poster