# PWC-Net **Repository Path**: winday00/PWC-Net ## Basic Information - **Project Name**: PWC-Net - **Description**: PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume, CVPR 2018 (Oral) - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-09-24 - **Last Updated**: 2024-10-12 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README [![License CC BY-NC-SA 4.0](https://img.shields.io/badge/license-CC4.0-blue.svg)](https://raw.githubusercontent.com/NVIDIA/FastPhotoStyle/master/LICENSE.md) ![Python 2.7](https://img.shields.io/badge/python-2.7-green.svg) ## PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume ### License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). ### Usage For Caffe users, please refer to [Caffe/README.md](Caffe/README.md). For PyTorch users, please refer to [PyTorch/README.md](PyTorch/README.md) The PyTorch implementation almost matches the Caffe implementation (average EPE on the final pass of the Sintel training set: 2.31 by Pytorch and 2.29 by Caffe). ### Network Architecture PWC-Net fuses several classic optical flow estimation techniques, including image pyramid, warping, and cost volume, in an end-to-end trainable deep neural networks for achieving state-of-the-art results. ![](network.png) ### Paper & Citation [Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. "PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume." CVPR 2018 or arXiv:1709.02371](https://arxiv.org/abs/1709.02371) [Updated and extended version: "Models Matter, So Does Training: An Empirical Study of CNNs for Optical Flow Estimation." arXiv:1809.05571](https://arxiv.org/abs/1809.05571) [Project page link](http://research.nvidia.com/publication/2018-02_PWC-Net:-CNNs-for) [Talk at robust vision challenge workshop](https://www.youtube.com/watch?v=vVU8XV0Ac_0) [Talk at CVPR 2018 conference](https://youtu.be/LBJ20kxr1a0?t=421) If you use PWC-Net, please cite the following paper: ``` @InProceedings{Sun2018PWC-Net, author = {Deqing Sun and Xiaodong Yang and Ming-Yu Liu and Jan Kautz}, title = {{PWC-Net}: {CNNs} for Optical Flow Using Pyramid, Warping, and Cost Volume}, booktitle = CVPR, year = {2018}, } ``` or the arXiv paper ``` @article{sun2017pwc, author={Sun, Deqing and Yang, Xiaodong and Liu, Ming-Yu and Kautz, Jan}, title={{PWC-Net}: {CNNs} for Optical Flow Using Pyramid, Warping, and Cost Volume}, journal={arXiv preprint arXiv:1709.02371}, year={2017} } ``` or the updated and extended version ``` @article{Sun2018:Model:Training:Flow, author={Sun, Deqing and Yang, Xiaodong and Liu, Ming-Yu and Kautz, Jan}, title={Models Matter, So Does Training: An Empirical Study of CNNs for Optical Flow Estimation}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, note = {to appear} } ``` For multi-frame flow, please also cite ``` @inproceedings{ren2018fusion, title={A Fusion Approach for Multi-Frame Optical Flow Estimation}, author={Ren, Zhile and Gallo, Orazio and Sun, Deqing and Yang, Ming-Hsuan and Sudderth, Erik B and Kautz, Jan}, booktitle={Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV)}, year={2019} } ``` ### Related Work from NVIDIA [flownet2-pytorch](https://github.com/NVIDIA/flownet2-pytorch) [Learning Rigidity in Dynamic Scenes with a Moving Camera for 3D Motion Field Estimation (ECCV 2018)](https://github.com/NVlabs/learningrigidity) ### Contact Deqing Sun (deqing.sun@gmail.com)