# toad **Repository Path**: work25/toad ## Basic Information - **Project Name**: toad - **Description**: toad评分卡 - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2023-08-18 - **Last Updated**: 2023-08-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
# TOAD [![PyPi version][pypi-image]][pypi-url] [![Python version][python-image]][docs-url] [![Build Status][actions-image]][actions-url] [![Downloads Status][downloads-image]][docs-url] Toad is dedicated to facilitating model development process, especially for a scorecard. It provides intuitive functions of the entire process, from EDA, feature engineering and selection etc. to results validation and scorecard transformation. Its key functionality streamlines the most critical and time-consuming process such as feature selection and fine binning. Toad 是专为工业界模型开发设计的Python工具包,特别针对评分卡的开发。Toad 的功能覆盖了建模全流程,从 EDA、特征工程、特征筛选 到 模型验证和评分卡转化。Toad 的主要功能极大简化了建模中最重要最费时的流程,即特征筛选和分箱。 ## Install and Upgrade · 安装与升级 Pip ```bash pip install toad # to install pip install -U toad # to upgrade ``` Conda ```bash conda install toad --channel conda-forge # to install conda install -U toad --channel conda-forge # to upgrade ``` Source code ```bash python setup.py install ``` ## Key features · 主要功能 The following showcases some of the most popular features of toad, for more detailed demonstrations and user guidance, please refer to the tutorials. 以下部分简单介绍了toad最受欢迎的一些功能,具体的使用方法和使用教程,请详见文档部分。 - Simple IV calculation for all features · 一键算IV: ```python toad.quality(data,'target',iv_only=True) ``` - Preliminary selection based on criteria · 根据特定条件的初步变量筛选; - and stepwise feature selection (with optimised algorithm) · 优化过的逐步回归: ```python selected_data = toad.selection.select(data,target = 'target', empty = 0.5, iv = 0.02, corr = 0.7, return_drop=True, exclude=['ID','month']) final_data = toad.selection.stepwise(data_woe,target = 'target', estimator='ols', direction = 'both', criterion = 'aic', exclude = to_drop) ``` - Reliable fine binning with visualisation · 分箱及可视化: ```python # Chi-squared fine binning c = toad.transform.Combiner() c.fit(data_selected.drop(to_drop, axis=1), y = 'target', method = 'chi', min_samples = 0.05) print(c.export()) # Visualisation to check binning results col = 'feature_name' bin_plot(c.transform(data_selected[[col,'target']], labels=True), x=col, target='target') ``` - Intuitive model results presentation · 模型结果展示: ```python toad.metrics.KS_bucket(pred_proba, final_data['target'], bucket=10, method = 'quantile') ``` - One-click scorecard transformation · 评分卡转化: ```python card = toad.ScoreCard( combiner = c, transer = transer, class_weight = 'balanced', C=0.1, base_score = 600, base_odds = 35 , pdo = 60, rate = 2 ) card.fit(final_data[col], final_data['target']) print(card.export()) ``` ## Documents · 文档 - [Tutorial](https://toad.readthedocs.io/en/latest/tutorial.html) - [中文指引](https://toad.readthedocs.io/en/latest/tutorial_chinese.html) - [docs][docs-url] ## Community · 社区 We welcome public feedback and new PRs. We hold a WeChat group for questions and suggestions. 欢迎各位提PR,同时我们有toad使用交流的微信群,欢迎询问加群。 ------------ ## Dedicated by **The ESC Team** [pypi-image]: https://img.shields.io/pypi/v/toad.svg?style=flat-square [pypi-url]: https://pypi.org/project/toad/ [python-image]: https://img.shields.io/pypi/pyversions/toad.svg?style=flat-square [actions-image]: https://img.shields.io/github/workflow/status/amphibian-dev/toad/Release?style=flat-square [actions-url]: https://github.com/amphibian-dev/toad/actions [downloads-image]: https://img.shields.io/pypi/dm/toad?style=flat-square [docs-url]: https://toad.readthedocs.io/