# modal_finetune_sql **Repository Path**: woshilu272/modal_finetune_sql ## Basic Information - **Project Name**: modal_finetune_sql - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-01-02 - **Last Updated**: 2025-01-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Finetuning LLaMa + Text-to-SQL This walkthrough shows you how to fine-tune LLaMa 2 7B on a Text-to-SQL dataset, and then use it for inference against any database of structured data using LlamaIndex. Check out our full blog here: https://medium.com/llamaindex-blog/easily-finetune-llama-2-for-your-text-to-sql-applications-ecd53640e10d This code is taken and adapted from the Modal `doppel-bot` repo: https://github.com/modal-labs/doppel-bot. ### Stack - LlamaIndex - Modal - Hugging Face datasets - OpenLLaMa - Peft ### Setup To get started, clone or fork this repo: ```bash git clone https://github.com/run-llama/modal_finetune_sql.git ``` ### Steps for Running Please load the notebook `tutorial.ipynb` for full instructions. ```bash cd modal_finetune_sql jupyter notebook tutorial.ipynb ``` In the meantime you can run each step individually as below: Loading data: `modal run src.load_data_sql` Finetuning: `modal run --detach src.finetune_sql` Inference: `modal run src.inference_sql_llamaindex::main --query "Which city has the highest population?" --sqlite-file-path "nbs/cities.db"` (Optional) Downloading model weights: `modal run src.download_weights --output-dir out_model`