# STSGCN **Repository Path**: wtadota/STSGCN ## Basic Information - **Project Name**: STSGCN - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-07-21 - **Last Updated**: 2021-07-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # STSGCN AAAI 2020. Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting url: paper/AAAI2020-STSGCN.pdf # Usage Docker is recommended. 1. install docker 2. install nvidia-docker 3. build image using `cd docker && docker build -t stsgcn/mxnet_1.41_cu100 .` 4. download the data [STSGCN_data.tar.gz](https://pan.baidu.com/s/1ZPIiOM__r1TRlmY4YGlolw) with code: `p72z` 5. uncompress data file using `tar -zxvf data.tar.gz` 6. modify the term `ctx` in `config/PEMS03/individual_GLU_mask_emb.json` to match your GPU devices 7. run code using `docker run -ti --rm --runtime=nvidia -v $PWD:/mxnet stsgcn/mxnet_1.41_cu100 python3 main.py --config config/PEMS03/individual_GLU_mask_emb.json` If you are using Microsoft OpenPAI, modify the configurations saved in the folder `pai_jobs` to train STSGCNs on your clusters. # repo structure name|description -|- config|configurations of STSGCN docker|dockerfile models|core of STSGCN pai_job|Microsoft OpenPAI configurations paper|paper of STSGCN test|pytest files load_params.py|read parameters from local files main.py|code of training STSGCN pytest.ini|pytest configurations requirements.txt|python packages requirements utils.py|tools