# ml-surveys **Repository Path**: wtadota/ml-surveys ## Basic Information - **Project Name**: ml-surveys - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-10-10 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ml-surveys It's hard to keep up with the latest and greatest in machine learning. Here's a selection of **survey papers summarizing the advances in the field**. [![contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](./CONTRIBUTING.md) Figuring out how to implement your ML project? Learn how other organizations did it 👉[`applied-ml`](https://github.com/eugeneyan/applied-ml) **Table of Contents** - [Recommendation](#recommendation) - [Deep Learning](#deep-learning) - [Natural Language Processing](#natural-language-processing) - [Computer Vision](#computer-vision) - [Reinforcement Learning](#reinforcement-learning) - [Embeddings](#embeddings) - [Meta-learning and Few-shot Learning](#meta-learning-and-few-shot-Learning) - [Others](#others) ## Recommendation - Algorithms: [Recommender systems survey](http://irntez.ir/wp-content/uploads/2016/12/sciencedirec.pdf) - Algorithms: [Deep Learning based Recommender System: A Survey and New Perspectives](https://arxiv.org/pdf/1707.07435.pdf) - Algorithms: [Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches](https://arxiv.org/pdf/1907.06902.pdf) - Serendipity: [A Survey of Serendipity in Recommender Systems](https://www.researchgate.net/publication/306075233_A_Survey_of_Serendipity_in_Recommender_Systems) - Diversity: [Diversity in Recommender Systems – A survey](https://papers-gamma.link/static/memory/pdfs/153-Kunaver_Diversity_in_Recommender_Systems_2017.pdf) - Explanations: [A Survey of Explanations in Recommender Systems](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.418.9237&rep=rep1&type=pdf) ## Deep Learning - Architecture: [A State-of-the-Art Survey on Deep Learning Theory and Architectures](https://www.mdpi.com/2079-9292/8/3/292/htm) - Knowledge distillation: [Knowledge Distillation: A Survey](https://arxiv.org/pdf/2006.05525.pdf) - Model compression: [Compression of Deep Learning Models for Text: A Survey](https://arxiv.org/pdf/2008.05221.pdf) - Transfer learning: [A Survey on Deep Transfer Learning](https://arxiv.org/pdf/1808.01974.pdf) - Neural architecture search: [A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions](https://arxiv.org/abs/2006.02903) - Neural architecture search: [Neural Architecture Search: A Survey](https://arxiv.org/abs/1808.05377) - Graph: [A Comprehensive Survey on Graph Neural Networks](https://arxiv.org/pdf/1901.00596.pdf) ## Natural Language Processing - Deep Learning: [Recent Trends in Deep Learning Based Natural Language Processing](https://arxiv.org/pdf/1708.02709.pdf) - Classification: [Deep Learning Based Text Classification: A Comprehensive Review](https://arxiv.org/pdf/2004.03705) - Generation: [Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation](https://www.jair.org/index.php/jair/article/view/11173/26378) - Generation: [Neural Language Generation: Formulation, Methods, and Evaluation](https://arxiv.org/pdf/2007.15780.pdf) - Transfer learning: [Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer](https://arxiv.org/abs/1910.10683) - Transformers: [Efficient Transformers: A Survey](https://arxiv.org/pdf/2009.06732.pdf) - Metrics: [Beyond Accuracy: Behavioral Testing of NLP Models with CheckList](https://arxiv.org/pdf/2005.04118.pdf) - Metrics: [Evaluation of Text Generation: A Survey](https://arxiv.org/pdf/2006.14799.pdf) ## Computer Vision - Object detection: [Object Detection in 20 Years](https://arxiv.org/pdf/1905.05055.pdf) - Adversarial attacks: [Threat of Adversarial Attacks on Deep Learning in Computer Vision](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8294186) - Autonomous vehicles: [Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art](https://arxiv.org/pdf/1704.05519.pdf) - Image Captioning: [A Comprehensive Survey of Deep Learning for Image Captioning](https://arxiv.org/pdf/1810.04020.pdf) ## Reinforcement Learning - Algorithms: [A Brief Survey of Deep Reinforcement Learning](https://arxiv.org/pdf/1708.05866.pdf) - Transfer learning: [Transfer Learning for Reinforcement Learning Domains](http://www.jmlr.org/papers/volume10/taylor09a/taylor09a.pdf) - Economics: [Review of Deep Reinforcement Learning Methods and Applications in Economics](https://arxiv.org/pdf/2004.01509.pdf) ## Embeddings - Graph: [A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications](https://arxiv.org/pdf/1709.07604) - Text: [From Word to Sense Embeddings:A Survey on Vector Representations of Meaning](https://www.jair.org/index.php/jair/article/view/11259/26454) - Text: [Diachronic Word Embeddings and Semantic Shifts](https://arxiv.org/pdf/1806.03537.pdf) - Text: [Word Embeddings: A Survey](https://arxiv.org/abs/1901.09069) - Text: [A Reproducible Survey on Word Embeddings and Ontology-based Methods for Word Similarity](https://doi.org/10.1016/j.engappai.2019.07.010) ## Meta-learning and Few-shot Learning - NLP: [Meta-learning for Few-shot Natural Language Processing: A Survey](https://arxiv.org/abs/2007.09604) - Domain Agnostic: [Learning from Few Samples: A Survey](https://arxiv.org/abs/2007.15484) - Neural Networks: [Meta-Learning in Neural Networks: A Survey](https://arxiv.org/abs/2004.05439) - Domain Agnostic: [A Comprehensive Overview and Survey of Recent Advances in Meta-Learning](https://arxiv.org/abs/2004.11149) - Domain Agnostic: [Baby steps towards few-shot learning with multiple semantics](https://arxiv.org/abs/1906.01905) - Domain Agnostic: [Meta-Learning: A Survey](https://arxiv.org/abs/1810.03548) - Domain Agnostic: [A Perspective View And Survey Of Meta-learning](https://www.researchgate.net/publication/2375370_A_Perspective_View_And_Survey_Of_Meta-Learning) ## Others - Transfer learning: [A Survey on Transfer Learning](http://202.120.39.19:40222/wp-content/uploads/2018/03/A-Survey-on-Transfer-Learning.pdf)