# TLS-Malware-Detection-with-Machine-Learning **Repository Path**: wu_zhengqi/TLS-Malware-Detection-with-Machine-Learning ## Basic Information - **Project Name**: TLS-Malware-Detection-with-Machine-Learning - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-30 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # TLS-Malware-Detection-with-Machine-Learning Repository containing code for cleaning of TLS flows extracted from Cisco Joy telemetry tool. Cleaned TLS flows are extracted and written to .csv file before machine learning classifiers are applied. Based on the research of Olivier Roques (https://github.com/ojroques/tls-malware-detection) and Cisco (https://blogs.cisco.com/security/detecting-encrypted-malware-traffic-without-decryption) ### Usage Cisco joy is utilized to extract network telemetry data from .pcap files. Run cisco joy using the parameters specified below: ``` bin/joy tls=1 bidir=1 dist=1 num_pkts=50 zeros=0 retrans=0 entropy=1 $file | gunzip | ./sleuth --where "tls=*" > filename.json ``` .json files are run through tls_flow_filter.py to produce .csv files ### Websites to obtain .pcaps for training and validation Link to magestic millions csv file: https://majestic.com/reports/majestic-million Link to websites which contain large .pcap files: https://www.netresec.com/?page=PcapFiles