# DCSAU-Net **Repository Path**: wuwu-wu/DCSAU-Net ## Basic Information - **Project Name**: DCSAU-Net - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-05-08 - **Last Updated**: 2025-05-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation ## News 2022.08.25: The DCSAU-Net model has been optimised. The paper will be updated later. 2022.09.27: The updated preprint has been available at [arXiv](https://arxiv.org/pdf/2202.00972v2.pdf). 2022.10.05: The method of calculating FLOPs, parameters and FPS has been uploaded. 2022.12.09: A requirements.txt for Linux environment has been uploaded. 2023.02.02: The article has been accepted and available in the journal: [Computers in Biology and Medicine](https://authors.elsevier.com/sd/article/S0010-4825(23)00091-4). If you like our work, please :star2: :star2: :star2:. We highly appreciate your effort and time. :stuck_out_tongue_closed_eyes: :stuck_out_tongue_closed_eyes: :stuck_out_tongue_closed_eyes: ## Requirements 1. pytorch==1.10.0 2. pytorch-lightning==1.1.0 3. albumentations==0.3.2 4. seaborn 5. sklearn ## Dataset To apply the model on a custom dataset, the data tree should be constructed as: ``` ├── data ├── images ├── image_1.png ├── image_2.png ├── image_n.png ├── masks ├── image_1.png ├── image_2.png ├── image_n.png ``` ## CSV generation ``` python data_split_csv.py --dataset your/data/path --size 0.9 ``` ## Train ``` python train.py --dataset your/data/path --csvfile your/csv/path --loss dice --batch 16 --lr 0.001 --epoch 150 ``` ## Evaluation ``` python eval_binary.py --dataset your/data/path --csvfile your/csv/path --model save_models/epoch_last.pth --debug True ``` ## Acknowledgement The codes are modified from [ResNeSt](https://github.com/zhanghang1989/ResNeSt/tree/5fe47e93bd7e098d15bc278d8ab4812b82b49414), [U-Net](https://github.com/milesial/Pytorch-UNet)