# MERIT **Repository Path**: wuwu-wu/MERIT ## Basic Information - **Project Name**: MERIT - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-07-19 - **Last Updated**: 2025-07-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MERIT This is the implementation of [Multi-scale Hierarchical Vision Transformer with Cascaded Attention Decoding for Medical Image Segmentation, MIDL 2023](https://2023.midl.io/papers/p165) [Video](https://youtu.be/DYwsK2lmhm4).
[Md Mostafijur Rahman](https://github.com/mostafij-rahman), [Radu Marculescu](https://radum.ece.utexas.edu/)

The University of Texas at Austin

#### 🔍 **Check out our CVPR 2024 paper! [EMCAD](https://github.com/SLDGroup/EMCAD)** #### 🔍 **Check out our CVPRW 2024 paper! [PP-SAM](https://github.com/SLDGroup/PP-SAM)** #### 🔍 **Check out our WACV 2024 paper! [G-CASCADE](https://github.com/SLDGroup/G-CASCADE)** #### 🔍 **Check out our WACV 2023 paper! [CASCADE](https://github.com/SLDGroup/CASCADE)** ## Architectures

## Qualitative Results on Synapse Multi-organ dataset

## Usage: ### Recommended environment: ``` Python 3.8 Pytorch 1.11.0 torchvision 0.12.0 ``` Please use ```pip install -r requirements.txt``` to install the dependencies. ### Data preparation: - **Synapse Multi-organ dataset:** Sign up in the [official Synapse website](https://www.synapse.org/#!Synapse:syn3193805/wiki/89480) and download the dataset. Then split the 'RawData' folder into 'TrainSet' (18 scans) and 'TestSet' (12 scans) following the [TransUNet's](https://github.com/Beckschen/TransUNet/blob/main/datasets/README.md) lists and put in the './data/synapse/Abdomen/RawData/' folder. Finally, preprocess using ```python ./utils/preprocess_synapse_data.py``` or download the [preprocessed data](https://drive.google.com/file/d/1tGqMx-E4QZpSg2HQbVq5W3KSTHSG0hjK/view?usp=share_link) and save in the './data/synapse/' folder. Note: If you use the preprocessed data from [TransUNet](https://drive.google.com/drive/folders/1ACJEoTp-uqfFJ73qS3eUObQh52nGuzCd), please make necessary changes (i.e., remove the code segment (line# 88-94) to convert groundtruth labels from 14 to 9 classes) in the utils/dataset_synapse.py. - **ACDC dataset:** Download the preprocessed ACDC dataset from [Google Drive of MT-UNet](https://drive.google.com/file/d/13qYHNIWTIBzwyFgScORL2RFd002vrPF2/view) and move into './data/ACDC/' folder. ### Pretrained model: You should download the pretrained MaxViT models from [Google Drive](https://drive.google.com/drive/folders/1k-s75ZosvpRGZEWl9UEpc_mniK3nL2xq?usp=share_link), and then put it in the './pretrained_pth/maxvit/' folder for initialization. ### Training: ``` cd into MERIT ``` For Synapse Multi-organ training run ```CUDA_VISIBLE_DEVICES=0 python -W ignore train_synapse.py``` For ACDC training run ```CUDA_VISIBLE_DEVICES=0 python -W ignore train_ACDC.py``` ### Testing: ``` cd into MERIT ``` For Synapse Multi-organ testing run ```CUDA_VISIBLE_DEVICES=0 python -W ignore test_synapse.py``` For ACDC testing run ```CUDA_VISIBLE_DEVICES=0 python -W ignore test_ACDC.py``` ## Acknowledgement We are very grateful for these excellent works [timm](https://github.com/huggingface/pytorch-image-models), [CASCADE](https://github.com/SLDGroup/CASCADE), [PraNet](https://github.com/DengPingFan/PraNet), [Polyp-PVT](https://github.com/DengPingFan/Polyp-PVT) and [TransUNet](https://github.com/Beckschen/TransUNet), which have provided the basis for our framework. ## Citations ``` @inproceedings{rahman2023multi, title={Multi-scale Hierarchical Vision Transformer with Cascaded Attention Decoding for Medical Image Segmentation}, author={Rahman, Md Mostafijur and Marculescu, Radu}, booktitle={Medical Imaging with Deep Learning (MIDL)}, month={July}, year={2023} } ```