# GAIN **Repository Path**: wuyina/GAIN ## Basic Information - **Project Name**: GAIN - **Description**: Codebase for Generative Adversarial Imputation Networks (GAIN) - ICML 2018 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 2 - **Forks**: 0 - **Created**: 2020-05-14 - **Last Updated**: 2024-12-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Codebase for "Generative Adversarial Imputation Networks (GAIN)" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon, Mihaela van der Schaar, "GAIN: Missing Data Imputation using Generative Adversarial Nets," International Conference on Machine Learning (ICML), 2018. Paper Link: http://proceedings.mlr.press/v80/yoon18a/yoon18a.pdf Contact: jsyoon0823@gmail.com This directory contains implementations of GAIN framework for imputation using two UCI datasets. - UCI Letter (https://archive.ics.uci.edu/ml/datasets/Letter+Recognition) - UCI Spam (https://archive.ics.uci.edu/ml/datasets/Spambase) To run the pipeline for training and evaluation on GAIN framwork, simply run python3 -m main_letter_spam.py. Note that any model architecture can be used as the generator and discriminator model such as multi-layer perceptrons or CNNs. ### Command inputs: - data_name: letter or spam - miss_rate: probability of missing components - batch_size: batch size - hint_rate: hint rate - alpha: hyperparameter - iterations: iterations ### Example command ```shell $ python3 main_letter_spam.py --data_name spam --miss_rate: 0.2 --batch_size 128 --hint_rate 0.9 --alpha 100 --iterations 10000 ``` ### Outputs - imputed_data_x: imputed data - rmse: Root Mean Squared Error