# BVHsmooth **Repository Path**: wuzetian/BVHsmooth ## Basic Information - **Project Name**: BVHsmooth - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-03 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # BVHsmooth Apply smoothening filters to an animation in BVH format. ## Usage To smoothen the **rotations** of the animation run: ```python code/smooth_rotation.py -i -o --filter ``` To smoothen the **positions** of the animation run: ```python code/smooth_position.py -i -o --filter ``` ## Filters: ### Butterworth (frquency domain) `--filter butterworth --border --u0 --order ` ### Central Moving Average (time domain) `--filter average -m ` ### Gaussian (frquency domain) - Not recomended, poor results. `--filter gaussian --border --sigma ` ## Example You can see the results using [BVH Player](http://www.akjava.com/demo/bvhplayer/). Let's use the provided sample BVH file **bvh_files/sample01.bvh**. The sample file was created by kinect capture method at CENA (Centro de Tecnologias Narrativas) laboratory, located at the Insituto Politécnico (IPRJ/UERJ). First, apply the smoothening in rotations: ```python code/smooth_rotation.py -i bvh_files/sample01.bvh -o bvh_files/out.bvh --filter butterworth --border 100 --u0 60 --order 2``` Then, apply the smoothening in positions: ```python code/smooth_position.py -i bvh_files/out.bvh -o bvh_files/out.bvh --filter butterworth --border 100 --u0 60 --order 2``` Now you can compare the files **bvh_files/sample01.bvh** and **bvh_files/out.bvh**.