# Cerebra **Repository Path**: wwz-2000/Cerebra ## Basic Information - **Project Name**: Cerebra - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-03-31 - **Last Updated**: 2024-03-31 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
A computationally efficient framework for accurateprotein structure prediction
## Install software on Linux 1. download `Cerebra` ```bash git clone https://github.com/Gonglab-THU/Cerebra.git cd Cerebra ``` 2. install `Anaconda` / `Miniconda` software 3. install Python packages ```bash conda create -n cerebra python=3.11 conda activate cerebra conda install pytorch cpuonly -c pytorch pip install click pip install numpy pip install ml_collections pip install scipy pip install einops pip install dm-tree pip install biopython ``` ## Usage * You should modify the [MSA file](example/test.a3m) * You should download the [model1-6 parameters](https://zenodo.org/doi/10.5281/zenodo.10608345) and move it into the `model` folder ```bash bash run.sh -i example/test.a3m -o example ``` * If you need to analyze the pearson correlation between path metrics and PSA attention weights, please use `model6.pth`. * As searching MSA can be time-consuming, please use `search_MSA.py` to search MSA if you want to obtain results consistent with those in Cerebra. ## Reference [Cerebra: a computationally efficient framework for accurate protein structure prediction](https://doi.org/10.1101/2024.02.02.578551)