# codenn **Repository Path**: wxwxzhang/codenn ## Basic Information - **Project Name**: codenn - **Description**: Summarizing Source Code using a Neural Attention Model - CODENN - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-11-04 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README **Run CODENN** See details of CODENN in our paper Summarizing Source Code using a Neural Attention Model (https://github.com/sriniiyer/codenn/blob/master/summarizing_source_code.pdf) Requirements * Torch (http://torch.ch/docs/getting-started.html) * Cutorch * antlr4 for parsing C# (pip install antlr4-python2-runtime) Setup environment `export PYTHONPATH=~/codenn/src/:~/codenn/src/sqlparse` `export CODENN_DIR=~/codenn/` `export CODENN_WORK=./workdir` Build both csharp and sql datasets Install modified sqlparse `cd src/sqlparse/` `sudo python setup.py install` Build datasets `cd src/model` `./buildData.sh` Train codenn models and predict on test set `./run.sh {sql|csharp}`