# tr3d **Repository Path**: wyhunstoppable/tr3d ## Basic Information - **Project Name**: tr3d - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-12-23 - **Last Updated**: 2024-10-22 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/tr3d-towards-real-time-indoor-3d-object/3d-object-detection-on-scannetv2)](https://paperswithcode.com/sota/3d-object-detection-on-scannetv2?p=tr3d-towards-real-time-indoor-3d-object) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/tr3d-towards-real-time-indoor-3d-object/3d-object-detection-on-sun-rgbd-val)](https://paperswithcode.com/sota/3d-object-detection-on-sun-rgbd-val?p=tr3d-towards-real-time-indoor-3d-object) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/tr3d-towards-real-time-indoor-3d-object/3d-object-detection-on-s3dis)](https://paperswithcode.com/sota/3d-object-detection-on-s3dis?p=tr3d-towards-real-time-indoor-3d-object) ## TR3D: Towards Real-Time Indoor 3D Object Detection **News**: * :fire: June, 2023. TR3D is accepted at [ICIP2023](https://2023.ieeeicip.org/). * :rocket: June, 2023. We add ScanNet-pretrained S3DIS model and log significantly pushing forward state-of-the-art. * February, 2023. TR3D on all 3 datasets is now supported in [mmdetection3d](https://github.com/open-mmlab/mmdetection3d) as a [project](https://github.com/open-mmlab/mmdetection3d/tree/main/projects/TR3D). * :fire: February, 2023. TR3D is now state-of-the-art on [paperswithcode](https://paperswithcode.com) on SUN RGB-D and S3DIS. This repository contains an implementation of TR3D, a 3D object detection method introduced in our paper: > **TR3D: Towards Real-Time Indoor 3D Object Detection**
> [Danila Rukhovich](https://github.com/filaPro), > [Anna Vorontsova](https://github.com/highrut), > [Anton Konushin](https://scholar.google.com/citations?user=ZT_k-wMAAAAJ) >
> Samsung Research
> https://arxiv.org/abs/2302.02858 ### Installation For convenience, we provide a [Dockerfile](docker/Dockerfile). Alternatively, you can install all required packages manually. This implementation is based on [mmdetection3d](https://github.com/open-mmlab/mmdetection3d) framework. Please refer to the original installation guide [getting_started.md](docs/en/getting_started.md), including MinkowskiEngine installation, replacing `open-mmlab/mmdetection3d` with `samsunglabs/tr3d`. Most of the `TR3D`-related code locates in the following files: [detectors/mink_single_stage.py](mmdet3d/models/detectors/mink_single_stage.py), [detectors/tr3d_ff.py](mmdet3d/models/detectors/tr3d_ff.py), [dense_heads/tr3d_head.py](mmdet3d/models/dense_heads/tr3d_head.py), [necks/tr3d_neck.py](mmdet3d/models/necks/tr3d_neck.py). ### Getting Started Please see [getting_started.md](docs/getting_started.md) for basic usage examples. We follow the mmdetection3d data preparation protocol described in [scannet](data/scannet), [sunrgbd](data/sunrgbd), and [s3dis](data/s3dis). **Training** To start training, run [train](tools/train.py) with TR3D [configs](configs/tr3d): ```shell python tools/train.py configs/tr3d/tr3d_scannet-3d-18class.py ``` **Testing** Test pre-trained model using [test](tools/dist_test.sh) with TR3D [configs](configs/tr3d): ```shell python tools/test.py configs/tr3d/tr3d_scannet-3d-18class.py \ work_dirs/tr3d_scannet-3d-18class/latest.pth --eval mAP ``` **Visualization** Visualizations can be created with [test](tools/test.py) script. For better visualizations, you may set `score_thr` in configs to `0.3`: ```shell python tools/test.py configs/tr3d/tr3d_scannet-3d-18class.py \ work_dirs/tr3d_scannet-3d-18class/latest.pth --eval mAP --show \ --show-dir work_dirs/tr3d_scannet-3d-18class ``` ### Models The metrics are obtained in 5 training runs followed by 5 test runs. We report both the best and the average values (the latter are given in round brackets). Inference speed (scenes per second) is measured on a single NVidia RTX 4090. Please, note that ScanNet-pretrained S3DIS model was actually trained in the original [openmmlab/mmdetection3d](https://github.com/open-mmlab/mmdetection3d/tree/main/projects/TR3D) codebase. **TR3D 3D Detection** | Dataset | mAP@0.25 | mAP@0.5 | Scenes
per sec.| Download | |:-------:|:--------:|:-------:|:-------------------:|:--------:| | ScanNet | 72.9 (72.0) | 59.3 (57.4) | 23.7 | [model](https://github.com/samsunglabs/tr3d/releases/download/v1.0/tr3d_scannet.pth) | [log](https://github.com/samsunglabs/tr3d/releases/download/v1.0/tr3d_scannet.log.json) | [config](configs/tr3d/tr3d_scannet-3d-18class.py) | | SUN RGB-D | 67.1 (66.3) | 50.4 (49.6) | 27.5 | [model](https://github.com/samsunglabs/tr3d/releases/download/v1.0/tr3d_sunrgbd.pth) | [log](https://github.com/samsunglabs/tr3d/releases/download/v1.0/tr3d_sunrgbd.log.json) | [config](configs/tr3d/tr3d_sunrgbd-3d-10class.py) | | S3DIS | 74.5 (72.1) | 51.7 (47.6) | 21.0 | [model](https://github.com/samsunglabs/tr3d/releases/download/v1.0/tr3d_s3dis.pth) | [log](https://github.com/samsunglabs/tr3d/releases/download/v1.0/tr3d_s3dis.log.json) | [config](configs/tr3d/tr3d_s3dis-3d-5class.py) | | S3DIS
ScanNet-pretrained | 75.9 (75.1) | 56.6 (54.8) | 21.0 | [model](https://github.com/samsunglabs/tr3d/releases/download/v1.0/tr3d_scannet-pretrain_s3dis.pth) | [log](https://github.com/samsunglabs/tr3d/releases/download/v1.0/tr3d_scannet-pretrain_s3dis.log) | [config](configs/tr3d/tr3d_scannet-pretrain_s3dis-3d-5class.py) | **RGB + PC 3D Detection on SUN RGB-D** | Model | mAP@0.25 | mAP@0.5 | Scenes
per sec.| Download | |:-----:|:--------:|:-------:|:-------------------:|:--------:| | ImVoteNet | 63.4 | - | 14.8 | [instruction](configs/imvotenet) | | VoteNet+FF | 64.5 (63.7) | 39.2 (38.1) | - | [model](https://github.com/samsunglabs/tr3d/releases/download/v1.0/votenet_ff_sunrgbd.pth) | [log](https://github.com/samsunglabs/tr3d/releases/download/v1.0/votenet_ff_sunrgbd.log.json) | [config](configs/votenet/votenet-ff_16x8_sunrgbd-3d-10class.py) | | TR3D+FF | 69.4 (68.7) | 53.4 (52.4) | 17.5 | [model](https://github.com/samsunglabs/tr3d/releases/download/v1.0/tr3d_ff_sunrgbd.pth) | [log](https://github.com/samsunglabs/tr3d/releases/download/v1.0/tr3d_ff_sunrgbd.log.json) | [config](configs/tr3d/tr3d-ff_sunrgbd-3d-10class.py) | ### Example Detections

drawing

### Citation If you find this work useful for your research, please cite our paper: ``` @misc{rukhovich2023tr3d, doi = {10.48550/ARXIV.2302.02858}, url = {https://arxiv.org/abs/2302.02858}, author = {Rukhovich, Danila and Vorontsova, Anna and Konushin, Anton}, title = {TR3D: Towards Real-Time Indoor 3D Object Detection}, publisher = {arXiv}, year = {2023} } ```