# crossview **Repository Path**: xdjiangkai/crossview ## Basic Information - **Project Name**: crossview - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-09-08 - **Last Updated**: 2025-09-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MCCG This repository contains the dataset link and the code for our paper [MCCG: A ConvNeXt-based Multiple-Classifier Method for Cross-view Geo-localization](https://ieeexplore.ieee.org/document/10185134), IEEE Transactions on Circuits and Systems for Video Technology. Thank you for your kindly attention. ## Requirement 1. Download the [University-1652](https://github.com/layumi/University1652-Baseline) dataset 2. Download the [SUES-200](https://github.com/Reza-Zhu/SUES-200-Benchmark) dataset 3. Configuring the environment * First you need to configure the torch and torchision from the [pytorch](https://pytorch.org/) website * ```shell pip install -r requirement.txt ``` ## About dataset The organization of the dataset. More detailed about Univetsity-1652 dataset structure: ``` ├── University-1652/ │ ├── train/ │ ├── drone/ /* drone-view training images │ ├── 0001 │ ├── 0002 │ ... │ ├── street/ /* street-view training images │ ├── satellite/ /* satellite-view training images │ ├── google/ /* noisy street-view training images (collected from Google Image) │ ├── test/ │ ├── query_drone/ │ ├── gallery_drone/ │ ├── query_street/ │ ├── gallery_street/ │ ├── query_satellite/ │ ├── gallery_satellite/ │ ├── 4K_drone/ ``` More detailed about SUES-200 dataset structure: ``` ├── SUES-200/ │ ├── train/ │ ├── 150/ │ ├── drone/ /* drone-view training images │ ├── 0001 │ ├── 0002 │ ... │ ├── satellite/ /* satellite-view training images │ ├── 200/ │ ├── 250/ │ ├── 300/ │ ├── test/ │ ├── 150/ │ ├── query_drone/ │ ├── gallery_drone/ │ ├── query_satellite/ │ ├── gallery_satellite/ │ ├── 200/ │ ├── 250/ │ ├── 300/ ``` ## Train and Test We provide scripts to complete MCCG training and testing * Change the **data_dir** and **test_dir** paths in **run.sh** and then run: ```shell bash run.sh ``` ## Citation ```bibtex @ARTICLE{Shen2024MCCG, author={Shen, Tianrui and Wei, Yingmei and Kang, Lai and Wan, Shanshan and Yang, Yee-Hong}, journal={IEEE Transactions on Circuits and Systems for Video Technology}, title={MCCG: A ConvNeXt-Based Multiple-Classifier Method for Cross-View Geo-Localization}, year={2024}, volume={34}, number={3}, pages={1456-1468}, keywords={Feature extraction;Drones;Task analysis;Image segmentation;Semantics;Satellites;Data mining;Cross-view;ConvNeXt;image retrieval;multiple feature representation}, doi={10.1109/TCSVT.2023.3296074}} ```