# material-lm **Repository Path**: xforcevesa/material-lm ## Basic Information - **Project Name**: material-lm - **Description**: This is a pytorch implementation of machine learning algorithms for material structure prediction. - **Primary Language**: Python - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 1 - **Created**: 2024-03-09 - **Last Updated**: 2024-04-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # material-lm ## Introduction - This is a pytorch implementation of machine learning algorithms for material structure prediction. - Currently, we only finished the tests and fundamentals. - Install the requirements and run with ```python main.py``` now! ## Requirements ```requirements python>=3.7 torch>=2.0.0 torchvision einops numpy scikit-learn matplotlib ``` ## TODO Lists 1. MLP Regressor (Finished) 2. Ridge Regression (Finished) 3. Random Forests (Finished) 4. Support Vector Regression (Finished) 5. Transformer - Decoder (Finished) 6. MAMBA (Finished) 7. RWKV (Finished) 8. ResNet (Finished) 9. Markov Chains (Finished) 10. Training & Validation 11. Interpretation Work ## Reference | Model | Location | Reference (Hyperlinks, click to open) | |:-------------------------:|:-------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | Random Forests | lm_tests/random_forest.py | 1. [Machine Learning Benchmarks and Random Forest Regression](https://escholarship.org/uc/item/35x3v9t4)
2. [Approximating Prediction Uncertainty for Random Forest Regression Models](https://www.ingentaconnect.com/content/asprs/pers/2016/00000082/00000003/art00016) | | Markov Chains | lm_tests/markov_chain.py | 1. [Markov models—Markov chains](https://www.nature.com/articles/s41592-019-0476-x)
2. [On Markov Chains for Independent Sets](https://www.sciencedirect.com/science/article/abs/pii/S0196677499910714) | | Support Vector Regression | lm_tests/support_vector_regression.py | 1. [A comparative analysis on linear regression and support vector regression](https://ieeexplore.ieee.org/abstract/document/7916627)
2. [Support Vector Regression Machines](https://proceedings.neurips.cc/paper_files/paper/1996/hash/d38901788c533e8286cb6400b40b386d-Abstract.html) | | Ridge Regression | models/ridge.py | [Ridge Regression: Applications to Nonorthogonal Problems](https://www.tandfonline.com/doi/abs/10.1080/00401706.1970.10488635) | | MLP Regressor | models/mlp.py | 1. [A Multilayer Perceptron (MLP) Regressor Network for Monitoring the Depth of Anesthesia](https://ieeexplore.ieee.org/abstract/document/9842242)
2. [A multi-layer perceptron approach for accelerated wave forecasting in Lake Michigan](https://www.sciencedirect.com/science/article/abs/pii/S0029801820305382) | | ResNet | models/resnet.py | 1. [Resnet in Resnet: Generalizing Residual Architectures](https://arxiv.org/abs/1603.08029)
2. [Convolutional Residual Memory Networks](https://arxiv.org/abs/1606.05262) | | Transformer | models/decoder.py | 1. [Attention Is All You Need](https://arxiv.org/abs/1706.03762)
2. [Fast Fourier Transform With Multihead Attention for Specific Emitter Identification](https://ieeexplore.ieee.org/abstract/document/10374078)
3. [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824)
4. [Fourier Transformer: Fast Long Range Modeling by Removing Sequence Redundancy with FFT Operator](https://arxiv.org/abs/2305.15099)
5. [iTransformer: Inverted Transformers Are Effective for Time Series Forecasting](https://arxiv.org/abs/2310.06625)
6. [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) | | RWKV | models/rwkv.py | 1. [RWKV: Reinventing RNNs for the Transformer Era](https://arxiv.org/abs/2305.13048)
2. [RRWKV: Capturing Long-range Dependencies in RWKV](https://arxiv.org/abs/2306.05176)
3. [RWKV-TS: Beyond Traditional Recurrent Neural Network for Time Series Tasks](https://arxiv.org/abs/2401.09093)
4. [Enhancing Transformer RNNs with Multiple Temporal Perspectives](https://arxiv.org/abs/2402.02625) | | MAMBA | models/mamba.py | 1. [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752)
2. [Is Mamba Capable of In-Context Learning?](https://arxiv.org/abs/2402.03170)
3. [Mamba4Rec: Towards Efficient Sequential Recommendation with Selective State Space Models](https://arxiv.org/abs/2403.03900)
4. [DenseMamba: State Space Models with Dense Hidden Connection for Efficient Large Language Models](https://arxiv.org/abs/2403.00818) |