# ESRGAN-pytorch **Repository Path**: xiaolanyu666/ESRGAN-pytorch ## Basic Information - **Project Name**: ESRGAN-pytorch - **Description**: super resolution pytorch using ESRGAN - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 2 - **Forks**: 0 - **Created**: 2020-11-27 - **Last Updated**: 2023-04-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ESRGAN-pytorch This repository implements a deep-running model for super resolution. Super resolution allows you to pass low resolution images to CNN and restore them to high resolution. We refer to the following article. [ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks](https://arxiv.org/abs/1809.00219) ## architecture [Overall Architecture] ![ESRGAN architecture](./image/architecture.PNG) [Basic block] ![BasicBlock](./image/basicBlock.PNG) ### Test Code ```bash python test.py --lr_dir LR_DIR --sr_dir SR_DIR ``` ## Prepare dataset ### Use Flicker2K and DIV2K ```bash cd datasets python prepare_datasets.py cd .. ``` ### custom dataset Make dataset like this; size of hr is 128x128 ans lr is 32x32 ``` datasets/ hr/ 0001.png sdf.png 0002.png 0003.png 0004.png ... lr/ 0001.png sdf.png 0002.png 0003.png 0004.png ... ``` ## how to train run main file ```bash python main.py --is_perceptual_oriented True --num_epoch=10 python main.py --is_perceptual_oriented False --epoch=10 ``` ## Sample we are in training on this code and train is not complete yet. this is intermediate result.