# ESRGAN-pytorch
**Repository Path**: xiaolanyu666/ESRGAN-pytorch
## Basic Information
- **Project Name**: ESRGAN-pytorch
- **Description**: super resolution pytorch using ESRGAN
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 2
- **Forks**: 0
- **Created**: 2020-11-27
- **Last Updated**: 2023-04-11
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# ESRGAN-pytorch
This repository implements a deep-running model for super resolution.
Super resolution allows you to pass low resolution images to CNN and restore them to high resolution.
We refer to the following article.
[ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks](https://arxiv.org/abs/1809.00219)
## architecture
[Overall Architecture]

[Basic block]

### Test Code
```bash
python test.py --lr_dir LR_DIR --sr_dir SR_DIR
```
## Prepare dataset
### Use Flicker2K and DIV2K
```bash
cd datasets
python prepare_datasets.py
cd ..
```
### custom dataset
Make dataset like this; size of hr is 128x128 ans lr is 32x32
```
datasets/
hr/
0001.png
sdf.png
0002.png
0003.png
0004.png
...
lr/
0001.png
sdf.png
0002.png
0003.png
0004.png
...
```
## how to train
run main file
```bash
python main.py --is_perceptual_oriented True --num_epoch=10
python main.py --is_perceptual_oriented False --epoch=10
```
## Sample
we are in training on this code and train is not complete yet.
this is intermediate result.
