# SADNet **Repository Path**: xiaolanyu666/SADNet ## Basic Information - **Project Name**: SADNet - **Description**: Pytorch code for "Spatial-Adaptive Network for Single Image Denoising" - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-12-09 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SADNet By Meng Chang, Qi Li, Huajun Feng, Zhihai Xu This is the official Pytorch implementation of "Spatial-Adaptive Network for Single Image Denoising" [[Paper]](https://arxiv.org/abs/2001.10291) (Noting: The source code is a coarse version for reference and the model provided may not be optimal.) ## Prerequisites * Python 3.6 * Pytorch 1.1 * CUDA 9.0 ## Get Started ### Installation The Deformable ConvNets V2 (DCNv2) module in our code adopts [chengdazhi's implementation](https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch). You can compile the code according to your machine. ``` cd ./dcn python setup.py develop ``` Please make sure your machine has a GPU, which is required for the DCNv2 module. ### Train 1. Download the training dataset and use `gen_dataset_*.py` to package them in the h5py format. 2. Place the h5py file in `/dataset/train/` or set the 'src_path' in `option.py` to your own path. 3. You can set any training parameters in `option.py`. After that, train the model: ``` cd $SADNet_ROOT python train.py ``` ### Test 1. Download the trained models from [Google Drive](https://drive.google.com/file/d/10HdJeTwvcJ804lQOZPk4fMLJEQaJx8Yc/view?usp=sharing) and place them in `/ckpt/`. 2. Place the testing dataset in `/dataset/test/` or set the testing path in `option.py` to your own path. 3. Set the parameters in `option.py` (eg. 'epoch_test', 'gray' and etc.) 3. test the trained models: ``` cd $SADNet_ROOT python test.py ``` ## Citation If you find the code helpful in your research or work, please cite the following papers. ``` @article{chang2020spatial, title={Spatial-Adaptive Network for Single Image Denoising}, author={Chang, Meng and Li, Qi and Feng, Huajun and Xu, Zhihai}, journal={arXiv preprint arXiv:2001.10291}, year={2020} } ``` ## Acknowledgments The DCNv2 module in our code adopts from [chengdazhi's implementation](https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch).