# Stepwise-Interpretable-Machine-Learning **Repository Path**: xlk0101/Stepwise-Interpretable-Machine-Learning ## Basic Information - **Project Name**: Stepwise-Interpretable-Machine-Learning - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-10-21 - **Last Updated**: 2021-10-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Stepwise-Interpretable-Machine-Learning This open-source code for the short-term demand forecasting aims to demonstrate the way of integrating econometric models and deep learning methods, using New York taxi records (yellow taxi and for-hire vehicle (FHV)). Published journal paper: Kim, T., Sharda, S., Zhou, X. and Pendyala, R.M., 2020. A stepwise interpretable machine learning framework using linear regression (LR) and long short-term memory (LSTM): City-wide demand-side prediction of yellow taxi and for-hire vehicle (FHV) service. Transportation Research Part C: Emerging Technologies, 120, p.102786. https://doi.org/10.1016/j.trc.2020.102786