# summit-notebooks **Repository Path**: xlk0101/summit-notebooks ## Basic Information - **Project Name**: summit-notebooks - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-10-20 - **Last Updated**: 2021-10-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Summit Notebooks Summit is an interactive system that scalably and systematically summarizes and visualizes what features a deep learning model has learned and how those features interact to make predictions. This repository contains the python notebooks used to generate the data used in the [Summit visualization][summit]. For the main Summit repo, go to [https://github.com/fredhohman/summit][summit]. ### Main notebooks: * [`activation-matrices.ipynb`](activation-matrices.ipynb): generate aggregated activation matrices * [`influence.py`](activation-matrices.ipynb): generate aggregated influence matrices * [`activation-matrices-to-json.ipynb`](activation-matrices-to-json.ipynb): combine activation matrices per class into json format * [`attribution-graph.ipynb`](dag.ipynb): generating class attribution graphs * [`feature-vis-sprite-to-images.ipynb`](feature-vis-sprite-to-images.ipynb): split feature visualization sprites to single images ### Experimental notebooks: * [`top-channels-used-per-layer.ipynb`](top-channels-used-per-layer.ipynb): analysis for determining which channels were used the most by all classes for all layers ## Live Demo For a live demo, visit: [fredhohman.com/summit][demo] ## Resources We used the following ImageNet metadata: * [https://github.com/google/inception/blob/master/synsets.txt](https://github.com/google/inception/blob/master/synsets.txt) * [https://gist.github.com/aaronpolhamus/964a4411c0906315deb9f4a3723aac57](https://gist.github.com/aaronpolhamus/964a4411c0906315deb9f4a3723aac57) * [https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a](https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a) ## License MIT License. See [`LICENSE.md`](LICENSE.md). ## Citation ``` @article{hohman2020summit, title={Summit: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution Summarizations}, author={Hohman, Fred and Park, Haekyu and Robinson, Caleb and Chau, Duen Horng}, journal={IEEE Transactions on Visualization and Computer Graphics (TVCG)}, year={2020}, publisher={IEEE}, url={https://fredhohman.com/summit/} } ``` ## Contact For questions or support [open an issue][issues] or contact [Fred Hohman][fred]. [summit]: https://github.com/fredhohman/summit [fred]: https://fredhohman.com [demo]: https://fredhohman.com/summit/ [issues]: https://github.com/fredhohman/summit-notebooks/issues