# DeepRitz **Repository Path**: xlk159357/DeepRitz ## Basic Information - **Project Name**: DeepRitz - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-05-14 - **Last Updated**: 2021-05-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DeepRitz&DeepGalerkin ## Implementation of the Deep Ritz method and the Deep Galerkin method Four problems are solved using the Deep Ritz method, see 2dpoisson-autograd.py, 2dpoisson-hole-autograd.py, 10dpoisson-cube-autograd.py, and 10dpoisson-autograd.py. Four problems are solved using least square functionals, see 2dpoisson-ls-autograd.py, 2dpoisson-hole-ls-autograd.py, 10dpoisson-cube-ls-autograd.py, and 10dpoisson-ls-autograd.py. ## Dependencies * [NumPy](https://numpy.org) * [PyTorch](https://pytorch.org/) * [MATLAB](https://www.mathworks.com/products/matlab.html) (for post-processing only) ## References [1] W E, B Yu. The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics 2018, 6:1-12. [[journal]](https://link.springer.com/article/10.1007/s40304-018-0127-z)[[arXiv]](https://arxiv.org/abs/1710.00211) [2] J Sirignano, K Spiliopoulos. DGM: A deep learning algorithm for solving partial differential equations. Journal of Computational Physics 2018, 375:1339–1364. [[journal]](https://www.sciencedirect.com/science/article/pii/S0021999118305527)[[arXiv]](https://arxiv.org/abs/1708.07469) [3] Y Liao, P Ming. Deep Nitsche method: Deep Ritz method with essential boundary conditions. 2019. [[arXiv]](https://arxiv.org/abs/1912.01309)