# efficientderain
**Repository Path**: xsro/efficientderain
## Basic Information
- **Project Name**: efficientderain
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: xs
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2022-04-14
- **Last Updated**: 2022-06-07
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# EfficientDerain
we propose EfficientDerain for high-efficiency single-image deraining
## Requirements
- python 3.6
- pytorch 1.6.0
- opencv-python 4.4.0.44
- scikit-image 0.17.2
- torchvision 0.9.1
- pytorch-msssim 0.2.1
## Datasets
- Rain100L-old_version https://github.com/nnUyi/DerainZoo/blob/master/DerainDatasets.md
- Rain100H-old_version https://github.com/nnUyi/DerainZoo/blob/master/DerainDatasets.md
- Rain1400 https://xueyangfu.github.io/projects/cvpr2017.html
- SPA https://stevewongv.github.io/derain-project.html
## Pretrained models
Here is the urls of pretrained models (includes v3_rain100H, v3_rain1400, v3_SPA, v4_rain100H, v4_rain1400, v4_SPA) :
direct download:
http://www.xujuefei.com/models_effderain.zip
google drive:
https://drive.google.com/file/d/1OBAIG4su6vIPEimTX7PNuQTxZDjtCUD8/view?usp=sharing
baiduyun:
https://pan.baidu.com/s/1kFWP-b3tD8Ms7VCBj9f1kw (pwd: vr3g)
## Train
- The code shown corresponds to version **v3**, for **v4** change the value of argument "**rainaug**" in file "**./train_*.sh**" to the "**true**" (train_*.sh means it's the training script of dataset *)
- Unzip the "Streaks_Garg06.zip" in the "./rainmix"
- Change the value of argument "**baseroot**" in file "**./train.sh**" to **the path of training data**
- Edit the function "**get_files**" in file "**./utils**" according to the format of the training data
- Execute
```
sh train.sh
```
## Test
- The code shown corresponds to version **v3**
- Change the value of argument "**load_name**" in file "**./test.sh**" to **the path of pretained model**
- Change the value of argument "**baseroot**" in file "**./test.sh**" to **the path of testing data**
- Edit the function "**get_files**" in file "**./utils**" according to the format of the testing data
- Execute
```
sh test.sh
```
## Results
The specific results can be found in “**./results/data/DERAIN.xlsx**”
GT vs RCDNet |
GT vs EfDeRain |
Input vs GT |
GT vs RCDNet |
GT vs EfDeRain |
Input vs GT |
GT vs v1 |
GT vs v2 |
GT vs v3 |
GT vs v4 |
GT vs v1 |
GT vs v2 |
GT vs v3 |
GT vs v4 |