# efficientderain **Repository Path**: xsro/efficientderain ## Basic Information - **Project Name**: efficientderain - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: xs - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-04-14 - **Last Updated**: 2022-06-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining ## Requirements - python 3.6 - pytorch 1.6.0 - opencv-python 4.4.0.44 - scikit-image 0.17.2 - torchvision 0.9.1 - pytorch-msssim 0.2.1 ## Datasets - Rain100L-old_version https://github.com/nnUyi/DerainZoo/blob/master/DerainDatasets.md - Rain100H-old_version https://github.com/nnUyi/DerainZoo/blob/master/DerainDatasets.md - Rain1400 https://xueyangfu.github.io/projects/cvpr2017.html - SPA https://stevewongv.github.io/derain-project.html ## Pretrained models Here is the urls of pretrained models (includes v3_rain100H, v3_rain1400, v3_SPA, v4_rain100H, v4_rain1400, v4_SPA) : direct download: http://www.xujuefei.com/models_effderain.zip google drive: https://drive.google.com/file/d/1OBAIG4su6vIPEimTX7PNuQTxZDjtCUD8/view?usp=sharing baiduyun: https://pan.baidu.com/s/1kFWP-b3tD8Ms7VCBj9f1kw (pwd: vr3g) ## Train - The code shown corresponds to version **v3**, for **v4** change the value of argument "**rainaug**" in file "**./train_*.sh**" to the "**true**" (train_*.sh means it's the training script of dataset *) - Unzip the "Streaks_Garg06.zip" in the "./rainmix" - Change the value of argument "**baseroot**" in file "**./train.sh**" to **the path of training data** - Edit the function "**get_files**" in file "**./utils**" according to the format of the training data - Execute ``` sh train.sh ``` ## Test - The code shown corresponds to version **v3** - Change the value of argument "**load_name**" in file "**./test.sh**" to **the path of pretained model** - Change the value of argument "**baseroot**" in file "**./test.sh**" to **the path of testing data** - Edit the function "**get_files**" in file "**./utils**" according to the format of the testing data - Execute ``` sh test.sh ``` ## Results The specific results can be found in “**./results/data/DERAIN.xlsx**”

GT vs RCDNet

GT vs EfDeRain

Input vs GT

GT vs RCDNet

GT vs EfDeRain

Input vs GT

GT vs v1

GT vs v2

GT vs v3

GT vs v4

GT vs v1

GT vs v2

GT vs v3

GT vs v4

## Bibtex ``` @inproceedings{guo2020efficientderain, title={EfficientDeRain: Learning Pixel-wise Dilation Filtering for High-Efficiency Single-Image Deraining}, author={Qing Guo and Jingyang Sun and Felix Juefei-Xu and Lei Ma and Xiaofei Xie and Wei Feng and Yang Liu}, year={2021}, booktitle={AAAI} } ```