# PyTorchNLPBook **Repository Path**: xubinlee/PyTorchNLPBook ## Basic Information - **Project Name**: PyTorchNLPBook - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-04-19 - **Last Updated**: 2021-04-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Natural Language Processing with PyTorch _Build Intelligent Language Applications Using Deep Learning_
By Delip Rao and Brian McMahan Welcome. This is a companion repository for the book [Natural Language Processing with PyTorch: Build Intelligent Language Applications Using Deep Learning](https://www.amazon.com/Natural-Language-Processing-PyTorch-Applications/dp/1491978236/). Table of Contents ================= * Get Started! * [Chapter 1: Introduction](https://github.com/joosthub/PyTorchNLPBook/tree/master/chapters/chapter_1) * PyTorch Basics * Chapter 2: A Quick Tour of NLP * [Chapter 3: Foundational Components of Neural Networks](https://github.com/joosthub/PyTorchNLPBook/tree/master/chapters/chapter_3) * In-text examples * Diving deep into supervised training * Classifying sentiment of restaurant reviews using a Perceptron * [Chapter 4: Feed-forward Networks for NLP](https://github.com/joosthub/PyTorchNLPBook/tree/master/chapters/chapter_4) * Limitations of the Perceptron * Introducing Multi-layer Perceptrons (MLPs) * Introducing Convolutional Neural Networks (CNNs) * Surname Classification with an MLP * Surname Classification with a CNN * [Chapter 5: Embedding Words and Types](https://github.com/joosthub/PyTorchNLPBook/tree/master/chapters/chapter_5) * Using Pretrained Embeddings * Learning Continous Bag-of-words Embeddings (CBOW) * Transfer Learning using Pre-trained Embeddings * [Chapter 6: Sequence Modeling for NLP](https://github.com/joosthub/PyTorchNLPBook/tree/master/chapters/chapter_6) * A sequence representation for Surnames * [Chapter 7: Intermediate Sequence Modeling for NLP](https://github.com/joosthub/PyTorchNLPBook/tree/master/chapters/chapter_7) * Generating novel surnames from sequence representations * Uncondition generation * Conditioned generation * [Chapter 8: Advanced Sequence Modeling for NLP](https://github.com/joosthub/PyTorchNLPBook/tree/master/chapters/chapter_8) * Understanding PackedSequences * Sequence to Sequence Learning * Attention * Neural Machine Translation * Chapter 9: Classics, Frontiers, Next Steps