# pandas
**Repository Path**: xueyoo/pandas
## Basic Information
- **Project Name**: pandas
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: BSD-3-Clause
- **Default Branch**: 0.19.x
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-05-12
- **Last Updated**: 2025-05-12
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
-----------------
# pandas: powerful Python data analysis toolkit
Latest Release |
 |
|
 |
Package Status |
 |
License |
 |
Build Status |
|
|
|
Coverage |
 |
Conda |
|
PyPI |
|
[](https://gitter.im/pydata/pandas?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
## What is it
**pandas** is a Python package providing fast, flexible, and expressive data
structures designed to make working with "relational" or "labeled" data both
easy and intuitive. It aims to be the fundamental high-level building block for
doing practical, **real world** data analysis in Python. Additionally, it has
the broader goal of becoming **the most powerful and flexible open source data
analysis / manipulation tool available in any language**. It is already well on
its way toward this goal.
## Main Features
Here are just a few of the things that pandas does well:
- Easy handling of [**missing data**][missing-data] (represented as
`NaN`) in floating point as well as non-floating point data
- Size mutability: columns can be [**inserted and
deleted**][insertion-deletion] from DataFrame and higher dimensional
objects
- Automatic and explicit [**data alignment**][alignment]: objects can
be explicitly aligned to a set of labels, or the user can simply
ignore the labels and let `Series`, `DataFrame`, etc. automatically
align the data for you in computations
- Powerful, flexible [**group by**][groupby] functionality to perform
split-apply-combine operations on data sets, for both aggregating
and transforming data
- Make it [**easy to convert**][conversion] ragged,
differently-indexed data in other Python and NumPy data structures
into DataFrame objects
- Intelligent label-based [**slicing**][slicing], [**fancy
indexing**][fancy-indexing], and [**subsetting**][subsetting] of
large data sets
- Intuitive [**merging**][merging] and [**joining**][joining] data
sets
- Flexible [**reshaping**][reshape] and [**pivoting**][pivot-table] of
data sets
- [**Hierarchical**][mi] labeling of axes (possible to have multiple
labels per tick)
- Robust IO tools for loading data from [**flat files**][flat-files]
(CSV and delimited), [**Excel files**][excel], [**databases**][db],
and saving/loading data from the ultrafast [**HDF5 format**][hdfstore]
- [**Time series**][timeseries]-specific functionality: date range
generation and frequency conversion, moving window statistics,
moving window linear regressions, date shifting and lagging, etc.
[missing-data]: http://pandas.pydata.org/pandas-docs/stable/missing_data.html#working-with-missing-data
[insertion-deletion]: http://pandas.pydata.org/pandas-docs/stable/dsintro.html#column-selection-addition-deletion
[alignment]: http://pandas.pydata.org/pandas-docs/stable/dsintro.html?highlight=alignment#intro-to-data-structures
[groupby]: http://pandas.pydata.org/pandas-docs/stable/groupby.html#group-by-split-apply-combine
[conversion]: http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe
[slicing]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#slicing-ranges
[fancy-indexing]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#advanced-indexing-with-ix
[subsetting]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing
[merging]: http://pandas.pydata.org/pandas-docs/stable/merging.html#database-style-dataframe-joining-merging
[joining]: http://pandas.pydata.org/pandas-docs/stable/merging.html#joining-on-index
[reshape]: http://pandas.pydata.org/pandas-docs/stable/reshaping.html#reshaping-and-pivot-tables
[pivot-table]: http://pandas.pydata.org/pandas-docs/stable/reshaping.html#pivot-tables-and-cross-tabulations
[mi]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#hierarchical-indexing-multiindex
[flat-files]: http://pandas.pydata.org/pandas-docs/stable/io.html#csv-text-files
[excel]: http://pandas.pydata.org/pandas-docs/stable/io.html#excel-files
[db]: http://pandas.pydata.org/pandas-docs/stable/io.html#sql-queries
[hdfstore]: http://pandas.pydata.org/pandas-docs/stable/io.html#hdf5-pytables
[timeseries]: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#time-series-date-functionality
## Where to get it
The source code is currently hosted on GitHub at:
http://github.com/pydata/pandas
Binary installers for the latest released version are available at the [Python
package index](http://pypi.python.org/pypi/pandas/) and on conda.
```sh
# conda
conda install pandas
```
```sh
# or PyPI
pip install pandas
```
## Dependencies
- [NumPy](http://www.numpy.org): 1.7.0 or higher
- [python-dateutil](http://labix.org/python-dateutil): 1.5 or higher
- [pytz](http://pytz.sourceforge.net)
- Needed for time zone support with ``pandas.date_range``
See the [full installation instructions](http://pandas.pydata.org/pandas-docs/stable/install.html#dependencies)
for recommended and optional dependencies.
## Installation from sources
To install pandas from source you need Cython in addition to the normal
dependencies above. Cython can be installed from pypi:
```sh
pip install cython
```
In the `pandas` directory (same one where you found this file after
cloning the git repo), execute:
```sh
python setup.py install
```
or for installing in [development mode](https://pip.pypa.io/en/latest/reference/pip_install.html#editable-installs):
```sh
python setup.py develop
```
Alternatively, you can use `pip` if you want all the dependencies pulled
in automatically (the `-e` option is for installing it in [development
mode](https://pip.pypa.io/en/latest/reference/pip_install.html#editable-installs)):
```sh
pip install -e .
```
On Windows, you will need to install MinGW and execute:
```sh
python setup.py build --compiler=mingw32
python setup.py install
```
See http://pandas.pydata.org/ for more information.
## License
BSD
## Documentation
The official documentation is hosted on PyData.org: http://pandas.pydata.org/
The Sphinx documentation should provide a good starting point for learning how
to use the library. Expect the docs to continue to expand as time goes on.
## Background
Work on ``pandas`` started at AQR (a quantitative hedge fund) in 2008 and
has been under active development since then.
## Discussion and Development
Since pandas development is related to a number of other scientific
Python projects, questions are welcome on the scipy-user mailing
list. Specialized discussions or design issues should take place on
the PyData mailing list / Google group:
https://groups.google.com/forum/#!forum/pydata