# pandas **Repository Path**: xueyoo/pandas ## Basic Information - **Project Name**: pandas - **Description**: No description available - **Primary Language**: Unknown - **License**: BSD-3-Clause - **Default Branch**: 0.19.x - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-05-12 - **Last Updated**: 2025-05-12 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

----------------- # pandas: powerful Python data analysis toolkit
Latest Release latest release
latest release
Package Status status
License license
Build Status travis build status
appveyor build status
Coverage coverage
Conda conda downloads
PyPI pypi downloads
[![https://gitter.im/pydata/pandas](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/pydata/pandas?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) ## What is it **pandas** is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, **real world** data analysis in Python. Additionally, it has the broader goal of becoming **the most powerful and flexible open source data analysis / manipulation tool available in any language**. It is already well on its way toward this goal. ## Main Features Here are just a few of the things that pandas does well: - Easy handling of [**missing data**][missing-data] (represented as `NaN`) in floating point as well as non-floating point data - Size mutability: columns can be [**inserted and deleted**][insertion-deletion] from DataFrame and higher dimensional objects - Automatic and explicit [**data alignment**][alignment]: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let `Series`, `DataFrame`, etc. automatically align the data for you in computations - Powerful, flexible [**group by**][groupby] functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data - Make it [**easy to convert**][conversion] ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects - Intelligent label-based [**slicing**][slicing], [**fancy indexing**][fancy-indexing], and [**subsetting**][subsetting] of large data sets - Intuitive [**merging**][merging] and [**joining**][joining] data sets - Flexible [**reshaping**][reshape] and [**pivoting**][pivot-table] of data sets - [**Hierarchical**][mi] labeling of axes (possible to have multiple labels per tick) - Robust IO tools for loading data from [**flat files**][flat-files] (CSV and delimited), [**Excel files**][excel], [**databases**][db], and saving/loading data from the ultrafast [**HDF5 format**][hdfstore] - [**Time series**][timeseries]-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc. [missing-data]: http://pandas.pydata.org/pandas-docs/stable/missing_data.html#working-with-missing-data [insertion-deletion]: http://pandas.pydata.org/pandas-docs/stable/dsintro.html#column-selection-addition-deletion [alignment]: http://pandas.pydata.org/pandas-docs/stable/dsintro.html?highlight=alignment#intro-to-data-structures [groupby]: http://pandas.pydata.org/pandas-docs/stable/groupby.html#group-by-split-apply-combine [conversion]: http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe [slicing]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#slicing-ranges [fancy-indexing]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#advanced-indexing-with-ix [subsetting]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing [merging]: http://pandas.pydata.org/pandas-docs/stable/merging.html#database-style-dataframe-joining-merging [joining]: http://pandas.pydata.org/pandas-docs/stable/merging.html#joining-on-index [reshape]: http://pandas.pydata.org/pandas-docs/stable/reshaping.html#reshaping-and-pivot-tables [pivot-table]: http://pandas.pydata.org/pandas-docs/stable/reshaping.html#pivot-tables-and-cross-tabulations [mi]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#hierarchical-indexing-multiindex [flat-files]: http://pandas.pydata.org/pandas-docs/stable/io.html#csv-text-files [excel]: http://pandas.pydata.org/pandas-docs/stable/io.html#excel-files [db]: http://pandas.pydata.org/pandas-docs/stable/io.html#sql-queries [hdfstore]: http://pandas.pydata.org/pandas-docs/stable/io.html#hdf5-pytables [timeseries]: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#time-series-date-functionality ## Where to get it The source code is currently hosted on GitHub at: http://github.com/pydata/pandas Binary installers for the latest released version are available at the [Python package index](http://pypi.python.org/pypi/pandas/) and on conda. ```sh # conda conda install pandas ``` ```sh # or PyPI pip install pandas ``` ## Dependencies - [NumPy](http://www.numpy.org): 1.7.0 or higher - [python-dateutil](http://labix.org/python-dateutil): 1.5 or higher - [pytz](http://pytz.sourceforge.net) - Needed for time zone support with ``pandas.date_range`` See the [full installation instructions](http://pandas.pydata.org/pandas-docs/stable/install.html#dependencies) for recommended and optional dependencies. ## Installation from sources To install pandas from source you need Cython in addition to the normal dependencies above. Cython can be installed from pypi: ```sh pip install cython ``` In the `pandas` directory (same one where you found this file after cloning the git repo), execute: ```sh python setup.py install ``` or for installing in [development mode](https://pip.pypa.io/en/latest/reference/pip_install.html#editable-installs): ```sh python setup.py develop ``` Alternatively, you can use `pip` if you want all the dependencies pulled in automatically (the `-e` option is for installing it in [development mode](https://pip.pypa.io/en/latest/reference/pip_install.html#editable-installs)): ```sh pip install -e . ``` On Windows, you will need to install MinGW and execute: ```sh python setup.py build --compiler=mingw32 python setup.py install ``` See http://pandas.pydata.org/ for more information. ## License BSD ## Documentation The official documentation is hosted on PyData.org: http://pandas.pydata.org/ The Sphinx documentation should provide a good starting point for learning how to use the library. Expect the docs to continue to expand as time goes on. ## Background Work on ``pandas`` started at AQR (a quantitative hedge fund) in 2008 and has been under active development since then. ## Discussion and Development Since pandas development is related to a number of other scientific Python projects, questions are welcome on the scipy-user mailing list. Specialized discussions or design issues should take place on the PyData mailing list / Google group: https://groups.google.com/forum/#!forum/pydata