# MyResearchWorksPublic **Repository Path**: xuhan12311/MyResearchWorksPublic ## Basic Information - **Project Name**: MyResearchWorksPublic - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-06-07 - **Last Updated**: 2025-06-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # About this repo This repo is used to store the source codes of my reseach work. It contains two main parts. The first one is the codes that I reimplemented before. The second part is the source codes of my publications. I hope this repo will be useful to you. # my_own_publications folder ## 1. MRA-CNN https://github.com/ShaneSpace/MyResearchWorksPublic/blob/main/my_own_publications/mra_cnn_final_public.py Citation: L. Jia, T. W. S. Chow, Y. Wang and Y. Yuan, "Multiscale Residual Attention Convolutional Neural Network for Bearing Fault Diagnosis," in IEEE Transactions on Instrumentation and Measurement, 2022, doi: https://doi.org/10.1109/TIM.2022.3196742. ## 2. GTFE-Net https://github.com/ShaneSpace/MyResearchWorksPublic/blob/main/my_own_publications/GTFE_Net_final_public.py Citation: L. Jia, T. W. S. Chow, and Y. Yuan, "GTFE-Net: A Gramian Time Frequency Enhancement CNN for bearing fault diagnosis," in Engineering Applications of Artificial Intelligence, 2023, doi: https://doi.org/10.1016/j.engappai.2022.105794. ## 3. CDDG https://github.com/ShaneSpace/DGFDBenchmark. Citation: L. Jia, T. W. S. Chow, and Y. Yuan, "Causal Disentanglement Domain Generalization for time-series signal fault diagnosis," in Neural Networks, 2024, doi: https://doi.org/10.1016/j.neunet.2024.106099 # reimplementation folder ## model 01 https://github.com/ShaneSpace/MyResearchWorksPublic/blob/main/reimplementation/model01_huangwenyi_Multi1DCNN.py Huang W, Cheng J, Yang Y, et al. An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis[J]. Neurocomputing, 2019, 359: 77-92. ## model 02 https://github.com/ShaneSpace/MyResearchWorksPublic/blob/main/reimplementation/model02_zhangwei_model.py Zhang W, Peng G, Li C, et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17(2): 425. ## model 03 https://github.com/ShaneSpace/MyResearchWorksPublic/blob/main/reimplementation/model03_pantongyang_model.py Pan T, Chen J, Zhou Z, et al. A novel deep learning network via multiscale inner product with locally connected feature extraction for intelligent fault detection[J]. IEEE Transactions on Industrial Informatics, 2019, 15(9): 5119-5128. ## model 04 https://github.com/ShaneSpace/MyResearchWorksPublic/blob/main/reimplementation/model04_pengdandan_mmcnn.py Peng D, Wang H, Liu Z, et al. Multibranch and multiscale CNN for fault diagnosis of wheelset bearings under strong noise and variable load condition[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4949-4960. ## model 05 https://github.com/ShaneSpace/MyResearchWorksPublic/blob/main/reimplementation/model05_liuruonan_multiscale.py Liu R, Wang F, Yang B, et al. Multiscale kernel based residual convolutional neural network for motor fault diagnosis under nonstationary conditions[J]. IEEE Transactions on Industrial Informatics, 2019, 16(6): 3797-3806. ## model 06 https://github.com/ShaneSpace/MyResearchWorksPublic/blob/main/reimplementation/model06_wenlong_model.py Wen L, Li X, Gao L, et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics, 2017, 65(7): 5990-5998. ## model 07 https://github.com/ShaneSpace/MyResearchWorksPublic/blob/main/reimplementation/model07_jiangguoqian_multiscale.py Jiang G, He H, Yan J, et al. Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox[J]. IEEE Transactions on Industrial Electronics, 2018, 66(4): 3196-3207. ## model 08 https://github.com/ShaneSpace/MyResearchWorksPublic/blob/main/reimplementation/model08_zhaojing_stim_cnn.py Zhao J, Yang S, Li Q, et al. A new bearing fault diagnosis method based on signal-to-image mapping and convolutional neural network[J]. Measurement, 2021, 176: 109088. ## model 09 https://github.com/ShaneSpace/MyResearchWorksPublic/blob/main/reimplementation/model09_liang_cnn.py Liang H, Zhao X. Rolling bearing fault diagnosis based on one-dimensional dilated convolution network with residual connection[J]. IEEE Access, 2021, 9: 31078-31091. ## model 10 https://github.com/ShaneSpace/MyResearchWorksPublic/blob/main/reimplementation/model10_zhaominghang_RSBU.py Zhao M, Zhong S, Fu X, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2019, 16(7): 4681-4690.