# CsdBERT **Repository Path**: xuyangyan/CsdBERT ## Basic Information - **Project Name**: CsdBERT - **Description**: Codes for "A Contrastive Self-distillation BERT with Kernel Alignment-Based Inference", published in ICCS 2023. - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-04-08 - **Last Updated**: 2024-04-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CsdBERT Codes for ["A Contrastive Self-distillation BERT with Kernel Alignment-Based Inference", published in ICCS 2023](https://www.researchgate.net/publication/372006456_A_Contrastive_Self-distillation_BERT_with_Kernel_Alignment-Based_Inference). ## Requirements We recommend using Anaconda for setting up the environment of experiments: ```bash conda create -n csdbert python=3.8.8 conda activate csdbert conda install pytorch==1.8.1 cudatoolkit=11.1 -c pytorch -c conda-forge pip install -r requirements.txt ``` ## Downstream task datasets The GLUE task datasets can be downloaded from the [**GLUE leaderboard**](https://gluebenchmark.com/tasks). The ELUE task datasets can be downloaded from the [**ELUE leaderboard**](http://eluebenchmark.fastnlp.top/#/landing). **Please see our paper for more details!** ## Contact If you have any problems, raise an issue or contact [Yangyan Xu](mailto:2071156850@qq.com). ## Citation If you find this repo helpful, we'd appreciate it a lot if you can cite the corresponding paper: ``` @inproceedings{xu2023contrastive, title={A Contrastive Self-distillation BERT with Kernel Alignment-Based Inference}, author={Xu, Yangyan and Yuan, Fangfang and Cao, Cong and Su, Majing and Lu, Yuhai and Liu, Yanbing}, booktitle={International Conference on Computational Science}, pages={553--565}, year={2023}, organization={Springer} } ```