# open-aff **Repository Path**: xxuffei/open-aff ## Basic Information - **Project Name**: open-aff - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-10-29 - **Last Updated**: 2024-10-29 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Attentional Feature Fusion ============== MXNet/Gluon code for "Attentional Feature Fusion" What's in this repo so far: * Code, trained models, and training logs for ImageNet **PS:** * If you are the reviewers of our submitted paper, please note that the accuracy of current implementation is a bit higher than the accuracy in the paper because it is a new implementation with a bag of tricks. * 如果您是我的学位论文评审专家,发现论文与这个 repo 的数字有些出入,那是因为在论文提交后我又将代码重新实现了一遍,添加了 AutoAugment、Label Smooting 这些技巧,所以目前这个 repo 中的分类准确率会比论文中的数字高一些,还请见谅。 **Change Logs:** * 2020-10-08: Re-implement the image classification code with a bag of tricks * 2020-09-29: Upload the image classification codes and trained models for the submitted paper **To Do:** * Running AFF-ResNeXt-50 and AFF-ResNet-50 on ImageNet * Update Grad-CAM results on new trained models * Re-implement the segmentation code * Convert to PyTorch **In Progress:** * Running iAFF-ResNeXt-50 on ImageNet **Done:** * Re-implement the image classification code with a bag of tricks ## Requirements Install [MXNet](https://mxnet.apache.org/) and [Gluon-CV](https://gluon-cv.mxnet.io/): ``` pip install --upgrade mxnet-cu101 gluoncv ``` If you are going to use autoaugment: ``` python3 -m pip install --upgrade "mxnet_cu101<2.0.0" python3 -m pip install autogluon ``` ## Experiments All trained model params and training logs are in `./params` The training commands / shell scripts are in `cmd_scripts.txt` ### ImageNet | Architecture | Params | top-1 err. | | -------- | ------- | ----------- | | ResNet-101 [[1]](#1) | 42.5M | 23.2 | | Efficient-Channel-Attention-Net-101 [[2]](#2) | 42.5M | 21.4 | | Attention-Augmented-ResNet-101 [[3]](#3) | 45.4M | 21.3 | | SENet-101 [[4]](#4) | 49.4M | 20.9 | | Gather-Excite-$\theta^{+}$-ResNet-101 [[5]](#5) | 58.4M | 20.7 | | Local-Importance-Pooling-ResNet-101 [[6]](#6) | 42.9M | 20.7 | | **AFF-ResNet-50 (ours)** | **30.3M** | **20.3** | | **iAFF-ResNet-50 (ours)** | **35.1M** | **20.2** | | **iAFF-ResNeXt-50-32x4d (ours)** | **34.7M** | **19.78** | ## PyTorch Version @bobo0810 has contributed the PyTorch version. Please check the `aff_pytorch` directory for details. Many thanks for @bobo0810 for his contribution. ## Citation Please cite our paper in your publications if our work helps your research. BibTeX reference is as follows. ``` @inproceedings{dai21aff, title = {Attentional Feature Fusion}, author = {Yimian Dai and Fabian Gieseke and Stefan Oehmcke and Yiquan Wu and Kobus Barnard}, booktitle = {{IEEE} Winter Conference on Applications of Computer Vision, {WACV} 2021} year = {2021} } ``` ## References [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun: Deep Residual Learning for Image Recognition. CVPR 2016: 770-778 [2] Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, Qinghua Hu: ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. CVPR 2020: 11531-11539 [3] Irwan Bello, Barret Zoph, Quoc Le, Ashish Vaswani, Jonathon Shlens: Attention Augmented Convolutional Networks. ICCV 2019: 3285-3294 [4] Jie Hu, Li Shen, Gang Sun: Squeeze-and-Excitation Networks. CVPR 2018: 7132-7141 [5] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Andrea Vedaldi: Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks. NeurIPS 2018: 9423-9433 [6] Ziteng Gao, Limin Wang, Gangshan Wu: LIP: Local Importance-Based Pooling. ICCV 2019: 3354-3363 [7] Xiang Li, Wenhai Wang, Xiaolin Hu, Jian Yang: Selective Kernel Networks. CVPR 2019: 510-519 [8] Dongyoon Han, Jiwhan Kim, Junmo Kim: Deep Pyramidal Residual Networks. CVPR 2017: 6307-6315 [9] Zhichao Lu, Gautam Sreekumar, Erik D. Goodman, Wolfgang Banzhaf, Kalyanmoy Deb, Vishnu Naresh Boddeti: Neural Architecture Transfer. CoRR abs/2005.05859 (2020) [10] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, Quoc V. Le: AutoAugment: Learning Augmentation Strategies From Data. CVPR 2019: 113-123