# senet-keras
**Repository Path**: xxuffei/senet-keras
## Basic Information
- **Project Name**: senet-keras
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2021-03-17
- **Last Updated**: 2024-07-31
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# SENet (Keras implementation)
---
**New information**
- We provide a trained SEResNeXt model (training data: cifar10)
[Google drive](https://drive.google.com/open?id=1JlHMYe-bZdcNJeaBZAUfdanWyMTuOana)
You can try this model in `evaluate-cifar10.ipynb`.
---
Naive implementation of SENet models in Keras.
- Transplanting https://github.com/taki0112/SENet-Tensorflow to Keras.
- Only SE-ResNext at this stage.
## Prerequisites
- nvidia-docker environment
## Environment constuction
- Build a docker image (on the root directory of the repository)
```
$ docker build -t [tag name] -f docker/Dockerfile .
```
- Create a container using the image
```
$ nvidia-docker run -it -v $PWD:/work [tag name]
```
## Train a model
- Train a model with cifar10 data.
```
(in the container) $ pwd
/work
(in the container) $ python train-cifar10.py
```
Note that this script is written in an insufficient way; use data generator in consideration of expansion to general image data). The training speed is slow. On a p3.2xlarge instance, it takes about 1.5 days.
## Evaluate the model
- Launch a jupyter notebook.
```
(in the container) $ bash launch_notebook.sh
```
- Execute `evaluate-cifar10.ipynb` notebook.
## Results
- Accuracy plot of train/val.

- Loss plot of train/val.

- Accuracy for the test data.
`92.38%`