# senet-keras **Repository Path**: xxuffei/senet-keras ## Basic Information - **Project Name**: senet-keras - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-03-17 - **Last Updated**: 2024-07-31 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SENet (Keras implementation) --- **New information** - We provide a trained SEResNeXt model (training data: cifar10) [Google drive](https://drive.google.com/open?id=1JlHMYe-bZdcNJeaBZAUfdanWyMTuOana) You can try this model in `evaluate-cifar10.ipynb`. --- Naive implementation of SENet models in Keras. - Transplanting https://github.com/taki0112/SENet-Tensorflow to Keras. - Only SE-ResNext at this stage. ## Prerequisites - nvidia-docker environment ## Environment constuction - Build a docker image (on the root directory of the repository) ``` $ docker build -t [tag name] -f docker/Dockerfile . ``` - Create a container using the image ``` $ nvidia-docker run -it -v $PWD:/work [tag name] ``` ## Train a model - Train a model with cifar10 data. ``` (in the container) $ pwd /work (in the container) $ python train-cifar10.py ``` Note that this script is written in an insufficient way; use data generator in consideration of expansion to general image data). The training speed is slow. On a p3.2xlarge instance, it takes about 1.5 days. ## Evaluate the model - Launch a jupyter notebook. ``` (in the container) $ bash launch_notebook.sh ``` - Execute `evaluate-cifar10.ipynb` notebook. ## Results - Accuracy plot of train/val.
 ![result](https://github.com/yoheikikuta/senet-keras/blob/resource/images/plot-accuracy.png) - Loss plot of train/val.
 ![result](https://github.com/yoheikikuta/senet-keras/blob/resource/images/plot-loss.png) - Accuracy for the test data.
`92.38%`