# InvDN **Repository Path**: xxxxcp/InvDN ## Basic Information - **Project Name**: InvDN - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2022-02-08 - **Last Updated**: 2022-02-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 2021). [arxiv](https://arxiv.org/pdf/2104.10546v1.pdf). ## Dependencies and Installation - Python 3 (Recommend to use [Anaconda](https://www.anaconda.com/download/#linux)) - [PyTorch >= 1.0](https://pytorch.org/) - NVIDIA GPU + [CUDA](https://developer.nvidia.com/cuda-downloads) - Python packages: `pip install numpy opencv-python lmdb pyyaml` - TensorBoard: - PyTorch >= 1.1: `pip install tb-nightly future` - PyTorch == 1.0: `pip install tensorboardX` ## Dataset Preparation The datasets used in this paper is DND (can be downloaded [here](https://noise.visinf.tu-darmstadt.de/)), SIDD (can be downloaded [here](https://www.eecs.yorku.ca/~kamel/sidd/)) and RNI. ## Get Started Training and testing codes are in ['codes/'](./codes/). Please see ['codes/README.md'](./codes/README.md) for basic usages. Pretrained model can be found in ['pretrained/'](./pretrained/) ## Invertible Architecture ![Invertible Architecture](./figures/Net_Arch_Caption.png) ## Visual Results ![Qualitative results on the SIDD, DND and RNI dataset](./figures/visual_results.png) All visual results for SIDD dataset can be found in ['results/'](./results/). ## Acknowledgement The code is based on [Invertible Image Rescaling](https://github.com/pkuxmq/Invertible-Image-Rescaling). If you find this code is helpful, please also cite the paper [Invertible Image Rescaling](https://arxiv.org/abs/2005.05650https://github.com/pkuxmq/Invertible-Image-Rescalinghttps://github.com/pkuxmq/Invertible-Image-Rescaling). ## Citation If you find this work helps you, please cite: ``` @article{liu2021invertible, title={Invertible Denoising Network: A Light Solution for Real Noise Removal}, author={Liu, Yang and Qin, Zhenyue and Anwar, Saeed and Ji, Pan and Kim, Dongwoo and Caldwell, Sabrina and Gedeon, Tom}, journal={arXiv preprint arXiv:2104.10546}, year={2021} } ``` ## Contact If you have any questions, please contact or .