# Birds-Keypoints-Detection **Repository Path**: xykyokberg/Birds-Keypoints-Detection ## Basic Information - **Project Name**: Birds-Keypoints-Detection - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-01-19 - **Last Updated**: 2024-01-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Birds-Keypoints-Detection Origin Picture | Detected Picture :-------------------------:|:-------------------------: | ## Introduction The repo is a bird-keypoints-detection based on Detectron 2. I use `labelme` as the tool to annotate pictures, which generates `json` files. Then, translate the `json` files to `coco` dataset by `labelme2coco.py`. Therefore, we can register the dataset to Detectron 2 and train the model. ## Downloads Just clone the repo. Moreover, if you want the annotated dataset or pre-trained model, you can download them in release. ## Requirement ### **Install Detectron 2** Follow the official Tutorials : https://detectron2.readthedocs.io/en/latest/tutorials/install.html ### **Other Modules** ````sh pip3 install labelme cv2 tqdm argparse ```` ## Code Files Description At this part, I will introduce the function of main code files. For how to use the code, you can read the comment on the head of these code files. ### coco_visualize.py Visualize COCO format data. ### labelme2coco_universal.py Transform the labelme annotation format to the coco format (suit for any case). ### labelme2coco.py Transform the labelme annotation format to the coco format (only suit for this repo). ### train.py Train models. ### demo.py Demonstrate the result of input (pics or videos). ### output_data.py Output the infomation of the detection results, including boxes bounder, scores, classes, keypoints (if existed). ### fig.py Visualize the Loss - Iter curve by reading the log file generated by Detectron 2. Here is an example: ![Figure_1](https://user-images.githubusercontent.com/66028151/161725566-c061b44e-b91d-4f71-a4e6-fc36e3ccff38.png) ### data_enhance/main.py Enhance annotation datas, such as scaling, adding noise and so on. ## Credits * [Detectron 2](https://github.com/facebookresearch/detectron2) from [Facebookresearch](https://github.com/facebookresearch). * Wah C., Branson S., Welinder P., Perona P., Belongie S. “The Caltech-UCSD Birds-200-2011 Dataset.” Computation & Neural Systems Technical Report, CNS-TR-2011-001.