# Birds-Keypoints-Detection
**Repository Path**: xykyokberg/Birds-Keypoints-Detection
## Basic Information
- **Project Name**: Birds-Keypoints-Detection
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2024-01-19
- **Last Updated**: 2024-01-19
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Birds-Keypoints-Detection
Origin Picture | Detected Picture
:-------------------------:|:-------------------------:
|
## Introduction
The repo is a bird-keypoints-detection based on Detectron 2. I use `labelme` as the tool to annotate pictures, which generates `json` files. Then, translate the `json` files to `coco` dataset by `labelme2coco.py`. Therefore, we can register the dataset to Detectron 2 and train the model.
## Downloads
Just clone the repo.
Moreover, if you want the annotated dataset or pre-trained model, you can download them in release.
## Requirement
### **Install Detectron 2**
Follow the official Tutorials : https://detectron2.readthedocs.io/en/latest/tutorials/install.html
### **Other Modules**
````sh
pip3 install labelme cv2 tqdm argparse
````
## Code Files Description
At this part, I will introduce the function of main code files. For how to use the code, you can read the comment on the head of these code files.
### coco_visualize.py
Visualize COCO format data.
### labelme2coco_universal.py
Transform the labelme annotation format to the coco format (suit for any case).
### labelme2coco.py
Transform the labelme annotation format to the coco format (only suit for this repo).
### train.py
Train models.
### demo.py
Demonstrate the result of input (pics or videos).
### output_data.py
Output the infomation of the detection results, including boxes bounder, scores, classes, keypoints (if existed).
### fig.py
Visualize the Loss - Iter curve by reading the log file generated by Detectron 2. Here is an example:

### data_enhance/main.py
Enhance annotation datas, such as scaling, adding noise and so on.
## Credits
* [Detectron 2](https://github.com/facebookresearch/detectron2) from [Facebookresearch](https://github.com/facebookresearch).
* Wah C., Branson S., Welinder P., Perona P., Belongie S. “The Caltech-UCSD Birds-200-2011 Dataset.” Computation & Neural Systems Technical Report, CNS-TR-2011-001.