# HybridSN **Repository Path**: xyt556/HybridSN ## Basic Information - **Project Name**: HybridSN - **Description**: A keras based implementation of Hybrid-Spectral-Net as in our paper "HybridSN: Exploring 3D-2D CNN Feature Hierarchy for Hyperspectral Image Classification". - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2020-08-12 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Hybrid-Spectral-Net for Hyperspectral Image Classification. [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/hybridsn-exploring-3d-2d-cnn-feature/hyperspectral-image-classification-on-indian)](https://paperswithcode.com/sota/hyperspectral-image-classification-on-indian?p=hybridsn-exploring-3d-2d-cnn-feature) ## Description The HybridSN is spectral-spatial 3D-CNN followed by spatial 2D-CNN. The 3D-CNN facilitates the joint spatial-spectral feature representation from a stack of spectral bands. The 2D-CNN on top of the 3D-CNN further learns more abstract level spatial representation. ## Model Fig: Proposed HybridSpectralNet (HybridSN) Model with 3D and 2D convolutions for hyperspectral image (HSI) classification. ## Prerequisites - [Anaconda 2.7](https://www.anaconda.com/download/#linux) - [Tensorflow 1.3](https://github.com/tensorflow/tensorflow/tree/r1.3) - [Keras 2.0](https://github.com/fchollet/keras) ## Results ### Indian Pines (IP) dataset Fig.2 The IN dataset classification result (Overall Accuracy 99.81%) of Hybrid-SN using 30% samples for training. (a) False color image. (b) Ground truth labels. (c) Classification map. (d) Class legend. ### University of Pavia (UP) dataset Fig.3 The UP dataset classification result (Overall Accuracy 99.99%) of Hybrid-SN using 30% samples for training. (a) False color image. (b) Ground truth labels. (c) Classification map. (d) Class legend. ### Salinas Scene (SS) dataset Fig.4 The UP dataset classification result (Overall Accuracy 100%) of Hybrid-SN using 30% samples for training. (a) False color image. (b) Ground truth labels. (c) Classification map. #### Detailed results can be found in the [Supplementary Material](supplementary-material.pdf) ## Citation If you use this code in your research, we would appreciate a citation to the original [paper](paper.pdf): @article{roy2019hybridsn, title={HybridSN: Exploring 3D-2D CNN Feature Hierarchy for Hyperspectral Image Classification}, author={Roy, Swalpa Kumar and Krishna, Gopal and Dubey, Shiv Ram and Chaudhuri, Bidyut B}, journal={IEEE Geoscience and Remote Sensing Letters}, year={2019} } ## Acknowledgement Part of this code is from a implementation of Classification of HSI using CNN by [Konstantinos Fokeas](https://github.com/KonstantinosF/Classification-of-Hyperspectral-Image). ## License Copyright (c) 2019 Gopal Krishna. Released under the MIT License. See [LICENSE](LICENSE) for details.