# HybridSN
**Repository Path**: xyt556/HybridSN
## Basic Information
- **Project Name**: HybridSN
- **Description**: A keras based implementation of Hybrid-Spectral-Net as in our paper "HybridSN: Exploring 3D-2D CNN Feature Hierarchy for Hyperspectral Image Classification".
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 1
- **Created**: 2020-08-12
- **Last Updated**: 2020-12-19
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Hybrid-Spectral-Net for Hyperspectral Image Classification.
[](https://opensource.org/licenses/MIT)
[](https://paperswithcode.com/sota/hyperspectral-image-classification-on-indian?p=hybridsn-exploring-3d-2d-cnn-feature)
## Description
The HybridSN is spectral-spatial 3D-CNN followed by spatial 2D-CNN. The 3D-CNN facilitates the joint spatial-spectral feature representation from a stack of spectral bands. The 2D-CNN on top of the 3D-CNN further learns more abstract level spatial representation.
## Model
Fig: Proposed HybridSpectralNet (HybridSN) Model with 3D and 2D convolutions for hyperspectral image (HSI) classification.
## Prerequisites
- [Anaconda 2.7](https://www.anaconda.com/download/#linux)
- [Tensorflow 1.3](https://github.com/tensorflow/tensorflow/tree/r1.3)
- [Keras 2.0](https://github.com/fchollet/keras)
## Results
### Indian Pines (IP) dataset
Fig.2 The IN dataset classification result (Overall Accuracy 99.81%) of Hybrid-SN using 30% samples for training. (a) False color image. (b) Ground truth labels. (c) Classification map. (d) Class legend.
### University of Pavia (UP) dataset
Fig.3 The UP dataset classification result (Overall Accuracy 99.99%) of Hybrid-SN using 30% samples for training. (a) False color image. (b) Ground truth labels. (c) Classification map. (d) Class legend.
### Salinas Scene (SS) dataset
Fig.4 The UP dataset classification result (Overall Accuracy 100%) of Hybrid-SN using 30% samples for training. (a) False color image. (b) Ground truth labels. (c) Classification map.
#### Detailed results can be found in the [Supplementary Material](supplementary-material.pdf)
## Citation
If you use this code in your research, we would appreciate a citation to the original [paper](paper.pdf):
@article{roy2019hybridsn,
title={HybridSN: Exploring 3D-2D CNN Feature Hierarchy for Hyperspectral Image Classification},
author={Roy, Swalpa Kumar and Krishna, Gopal and Dubey, Shiv Ram and Chaudhuri, Bidyut B},
journal={IEEE Geoscience and Remote Sensing Letters},
year={2019}
}
## Acknowledgement
Part of this code is from a implementation of Classification of HSI using CNN by [Konstantinos Fokeas](https://github.com/KonstantinosF/Classification-of-Hyperspectral-Image).
## License
Copyright (c) 2019 Gopal Krishna. Released under the MIT License. See [LICENSE](LICENSE) for details.